UNIVERSITE
SAVOIE
MONT BLANC

e e - . - - i

Low Power modes
on STM32

Lecture version 1

June 2021

Sylvain MONTAGNY

M www.linkedin.com/in/sylvainmontagny

=< svlvain.montagny@univ-smb.fr

https://www.linkedin.com/in/sylvainmontagny/
mailto:sylvain.montagny@univ-smb.fr

Synopsis

This PDF book is distributed free of charge on our website and can be used for any purposes. Any
suggestions are welcome and can be proposed to the Author. This academic content is part of the
Electronics and Embedded Systems Master degree at "Savoie Mont-Blanc" University (France).

The lecture explains in detail the main low power modes of the STM32 microcontrollers (LO and F4
series). It also provides tips to drastically reduce power consumption when engineers develop
firmware for Cortex M.

Source

The content of the book comes from a compilation of various documentations, datasheets,
reference manual, application notes from ST. Some examples and explanations come from the
excellent Fastbitlab STM32 lecture.

Related document

This document is part of a set of resources on loT and LPWAN (Low Power Wide Area Network).

m A free PDF Book on LoRa-LoRaWAN
m 130 short videos on LoRa LoRaWAN and 10T
m Two days training with online instructor

https://scem-eset.univ-smb.fr/
http://fastbitlab.com/
https://cutt.ly/livrelorawan
https://cutt.ly/lorawan
https://cutt.ly/formationlorawan

1

Table of contents

MATERIALS AND DOCUMENTATIONSceeeieiteenierieneerteneertensersenssessenssessenssesssnssesssnssessanssssssnssssssnssses 4
1.1 THETWO MCU TESTED ..ceiiiiiieeiiieeeeeeeeeeeeeeeeeeeee ettt e e e ee e e e e e n e e e ERREUR ! SIGNET NON DEFINI.
1.2 THE X-NUCLEO-LPMO1A MEASUREMENT BOARD.....cceeettieieieieieieeereieeereeeeeeeeeeeseseseseseseeseeseresesssssssesssessrerens 4
1.3 STM3B2CUBEMONITOR-POWERvvtuuieeeeieteiutiieeeeeeeeertnieseeereestsnieseessesstanaeeesssssstnesesessssssmniesesssssssnnnaeeens 8
1.4 DEBUGGING ISSUES WITH LOW POWER ..cceieieiiieieieieieieieieieieseeeieeeeeeesesesesssesesesesssesesesssesesssssesesesesesesesesesseeeens 8

PROGCESSOR IVIODES.....ccuuittteuterteenertennsereennsessenssessesssesssnssessssssesssnsssssnssssssnsssssssssssssnssssssnssssssnsssssannsns 10
2.1 RUNNING IVIODE ... ceuuiiitie ettt ettt e ettt e et tee e e tae e et ateeesta e e eaaaeeeataeestanessannaestnneessnnsessnnsesssnneessnneeensnnns 10
2.2 LOW POWER IVIODES ... cctuuiiiiteeetiieeeeite e e etiie e ettt e e stteeestteeeaatn e sataeestnnassannsasstnneessnnasessnnsesssnneessnneeensnnns 10

REDUCING THE POWER CONSUIMPTIONcotteeieiieenerrenneriennerrenssessenssesssnssssssnssesssnssssssnssssssnnssssannsns 16
3.1 INITIAL APPLICATION .eivieieieieieiereieteeereeeteeesesesereseseresesereseseseseserererererererererererererereserererereeererererererererererens 16
3.2 USING THE "SLEEP ON EXIT" FEATURE vvvvieeiieiittreeiteeeieiitreeeeeeeeeissraeeeeeeeeiessssseeesesssesssssessesssessssssssesssennns 18
3.3 EFFECT OF THE CPU FREQUENCY ..ceeivieieieieieieieieeeeeeeeeeeeeeeeeeeeeeeseeesesesesesesesesesesesesesesesesesessssressseressseserereeens 19
3.4 EFFECT OF THE TEMPERATURE ..ctettiiiiieieieeeieieeeeeeeeeseeeeeeeeeeeeeseseseseseteseeeseeeseseeeteteteeeteeetereteeereseserererererererees 21
3.5 EFFECT OF THE CLOCK SOURCE.....ciittiiiiieieieieieieeeeeteeeeee et et et ee e e et et eeeeeseeeseseseseeeseteeeeeseeeeeseseeereseeesererererereeees 23
3.6 EFFECT OF THE USART2 BAUDRATE .ceitiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeee e e et et e eeeeeeeeeeeeeeeeeeeeseeeeeseseseeeseseseseseserereeees 29
3.7 EFFECT OF THE APB1 PERIPHERAL FREQUENCY ...ceeeiiieieieieieieieeeeeieeeeeeeeeeeseeeeesesesesesesesesesesesssssessseseseseseseseeees 30
3.8 EFFECT OF THE USART2 MODE ...coeiiiiiiiiiiieieeeeeeeeeeeeeee et et et et e e et e e et et e e e e e e eeeeeeeeeeeeeeeeeseseeeseseseseseseseseeererereeees 31
3.9 EFFECT OF USART2 CLOCK GATING....eieieieieieieieieieiereieeereeerererererererereseseresereresesssessserereressssressreresereserseeeens 31
3.10 EFFECT OF THE GPIO CONFIGURATION ..evviiieieieieieieieeeieieieeeeeeereeeeerereresesessseseseseseseesseresssersrseessseresesererererens 33
3.11 EFFECT OF THE SYSTICK INTERRUPT teteieieieieieieeeiereiererereteeerererereseresesesesessseseseseseseesseseseressssressseresereserereeens 33
3.12 EFFECT OF USING USART INTERRUPT ..eititieieieieieieieeeeeeeeeeeeeeeeeeeeeeeeeeesesesesesesesssesesesesessssreressreseseresererersreeens 35
3.13 EFFECT OF THE DIMA FOR SENDING THE DATA ccetiiiieieieieieieieieeeieeeeeeeeeeeeeseeesesesesesesesesesesesesesssesssesesesereserenens 37
3.14 EFFECT OF THE CODE OPTIMIZATION ..ceveiiiiieiiieieieieieeeeeeeeeeeeeeeeeeeseeesesetesesesesesesesesesesesesesesereressseresereserererees 39

HOW TO ENTER THE SLEEP MODE - WFI / WFE INSTRUCTION.....cccccottiiirrrnnneeeereecsssnnneeeesesssssnnnsseessenes 41
4.1 WFI INSTRUCTION: WAIT FOR INTERRUPT
4.2 WFE INSTRUCTION: WAIT FOR EVENTccvuvvvvnnnneen
4.3 WHEN TO USE WL ORWWFE? .ttt ettt sttt n e s ee s e s s s e s s seseseseseseeesesesesesss 49

THE POWER DOMAINS.....ccuciteeierteenierteeniereensereenssereensserssnssessenssesssnssesssnssessssssssssnssessssssessnnssssensssssanns 51
5.1 POWER SUPPLY OVERVIEWeevvtttiieeeeeretsttieeesersssssnieseeessssssnneseesssssssnnsesessssssnnnesesessssssnnneseessssssnnneesesssees 51
5.2 THE REGULATORS «..eeevetttutueeeeeereessnneseesssssssnneseeessssssnnseseesssssssnneesessssssssnnsesessssssssnnsesessssssnnnnsesessssssnnenees 51
5.3 THE REGULATORS MODES....ciiiiiiieieieiiieieeeteeeseeeeeeeeeeeeeeeeeaeeeeeteeateteeeeeaeteaeaeeeseseeeeeeeseeeeeseeseereeeeereseeeeeeeeeeees 51

EXPLORING THE STOP IMODE.......ccccittitiiiienniiiiennieniensesisnssesisnssesssnssesssnssssssnssssssnssssssnssssssnssssssnssssssnnnns 54
6.1 ENTERING THE STOP IMIODE......ccciiiiieieieieieeeieceeeseeeeaseeaseseeeseeeeereseseseeerererererens 54
6.2 TEST OF THE STOP IMIODES ... e iieieieieieeeeeeeeeee ettt ettt et e e e e e e e e eeeeeeeeeeeeeseeeeaeeeeeeeees 56

EXPLORING THE STANDBY IMODEcccucttttiiiienniiniennieniennienienssesssnssesssnssssssnssssssnssssssnssssssnssssssnssssssnnsns 60
7.1 THE STANDBY IMODE ..evvttuuueeeeeeresteuseseeersssssnaeseeessssssnaeseesssssssneesessssssssnnsesessssssssnesesessssssnnesesessssssnnnesees 60
7.2 THE BACKUP DOMAIN ...etuuueeeeerrtrrtneeeeeeeressssnaeseeessssssnaesessssssssnsesessssssssnesesessssssnsnnsesessssssnnesessssssssnnnesees 62

THE RTC .uiieeuiiiitenierieenereeensereenssereenssesesnssesesnssesessssesesnssesssnssssssnssssssnssesssnssssesnssssssnssesesnssesennssssennssenanns 65
8.1 GENERAL OVERVIEW .. eeevvvtuieeeeereeessneeseeessssssnneseesssssssnnesessssssssnnseesssssssssnasesessssssssnneesesssssssnnneessssssssnnnn 65
8.2 USING THE RTC o eiiiiiiieieieeeeeeeeeeeeeeeeee ettt ettt et et e et e e et et et e e e e e s eeeeaeeeaeaeeeaearaeaeererereeens 67

1 Materials and documentations

1.1 MCU and Nucleo board

This book provide many examples tested on two Nucleo boards but all Nucleo Board should work.

We are going to use two different microcontrollers on Nucleo boards: the STM32F446RE and the
STM32L073RZ. STM32L073 is aimed for low power application while STM32F446 is used for small
DSP applications.

Note: For some reasons, the power consumption between two Nucleo boards with the same MCU
are slightly different from one another. Therefore, you will have to keep the same Nucleo
STM32F446 and the same Nucleo STM32L073 during all your experiments.

1.1.1 The STM32F446RE
Features:

Cortex®-M4 CPU with FPU, ART Accelerator™, frequency up to 180 MHz, DSP instructions
225 DMIPS/ 1.25 DMIPS per MHz (Dhrystone 2.1)

Memories: 512 kB of Flash memory - 128 KB of SRAM

Low power - Sleep, Stop and Standby modes — VBAT supply for RTC

Links for documentation:

m Reference Manual STM32F446xx : RM0390 from ST
m Datasheet STM32F446xC/E from ST
m Cortex M4 Device : Generic User Guide from ARM

1.1.2 The STM32L073RZ
Features:

ARM® 32-bit Cortex®-MO0+ with MPU - From 32 kHz up to 32 MHz max
0.95 DMIPS per MHz

Memories: 192 KB Flash memory - 20KB RAM - 6 KB of data EEPROM
0.29 pA Standby mode - 0.43 pA Stop mode (16 wakeup lines)

Links for documentation:

m Reference Manual STM32L0x3 : RM0367 from ST
m Datasheet STM32L073xZ from ST
m Cortex MO Device : Generic User Guide from ARM

1.2 The X-NUCLEO-LPMO1A measurement board

We are using the X-NUCLEO-LPMO1A board to measure de current/energy consumption. This board
is working with voltage from 1,8V to 3,3V. It measures dynamic current up to 50 mA with a
maximum 100 khz bandwith.

https://www.st.com/resource/en/reference_manual/dm00135183-stm32f446xx-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/datasheet/stm32f446re.pdf
https://documentation-service.arm.com/static/5f2ac76d60a93e65927bbdc5?token=
https://www.st.com/resource/en/reference_manual/dm00095744-ultra-low-power-stm32l0x3-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/datasheet/stm32l073v8.pdf
https://documentation-service.arm.com/static/5ea6ce5e9931941038def8c1?token=

Link for documentation:

m X-NUCLEO-LPMO1A expansion board User manual : UM2243 from ST

We need an micro USB cable to power this board.

1.2.1 Power supply Overview of the Nucleo board
On the Nucleo board, Jumper 5 (JP5) controls several possibilities to power the entire Nucleo board.

1. USB 5V (U5V): From the usual USB mini connector (CN1).
2. E5V (external power supply 5V): From the Morpho connector (CN7 pin 6).
3. Vin (external power supply from 7 to 12V): From the Arduino connector (CN6 pin 8).

PWR Enable
by ST-Link puC
|
1
!
(1)usv —o e ———» VDDswa
USB connector CN1 +5V +3.3V JP6 VDDnucleo
Regulator —————® @—p—P»— > VDDAsva
. IDD
(3) \,IL Regulator (2) E v e VBATstMm32
7to12V CN7 pin6
CN6 Pin 8

Figure 1 : Power supply overview for the Nucleo board

We want to measure the current IDD, which represents the overall current consumed by the uC. On
the Nucleo board, this IDD current goes through JP6, than powers the MCU via:

| VDD5T|\/|32 (VDD domain)
m VDDAsrus2 (Analog domain) thanks to SB45 (Soldier Bridge 45)
m VBATstvs2 (Backup domain) thanks to SB57 (Soldier Bridge 57)

Therefore, a current measurement on JP6 provides the overall current consumption of the MCU.

https://www.st.com/resource/en/user_manual/dm00406577-stm32-nucleo-expansion-board-for-power-consumption-measurement-stmicroelectronics.pdf

1.2.2 Measurement via the white CN14 Connector of X-NUCLEO-LPMO1A

This will be the preferred way to measure the power consumption during all labs.

The CN14 of the X-NUCLEO-LPMO1A provide four signals. Only Pin 3 and Pin 1 are useful here.

CN14 pin Signal Usage
Pin 1 GND_(-) Ground of the target
Pin 2 VDD Alternate power supply source (not measured)
Pin 3 VOUT (+) Positive connection of the target, current is measured
Pin 4 VOUT MONITORING ET,:::Z; Efp ;/\?;‘E‘;zgzuwri r\r/gr::;l' monitoring without impacting

Table 1: PIN connections between the Nucleo and the LPMO1A module

m The ST Link and all the other components of the Nucleo board will be powered by the U5V
coming from the USB.
m STM32 will be powered by the X-NUCLEO-LPMO1A board.

Nucleo Board

- (except STM32)
JP6 off VDDnucleo =
+3.3V =
usv » Regulator o © IDD >
USB connector CN1 f

VOUT+ (CN14 Pin 3)

X-NUCLEO-LPMO1A
Provide and measure IDD

Figure 2: Power and measurement of the Nucleo board and STM32

The X-NUCLEO-LPMO1A will provide VDD and measure the IDD current. Here are the configurations
and connexions of both Nucleo and X-NUCLEO-LPMO1A board:

Nucleo board:

m Remove JP6 (IDD)
m Check:JP5on "U5V", ST-Link On

X-NUCLEO-LPMO1A: We follow the instruction of the documentation for JP9, JP10 and JP4

JP9 JP10 JP4
Power output on Output co&:zctors and AREF_ARD | 3V3_ARD Additional decoupling capacitor
jumper jumper jumper
Basic connector | Vout: CN14 pin3 Open: no decoupling capacitor
. open open
CN14 GND: CN14 pin1 Closed: 2.2 uF decoupling capacitor

Figure 3: Configuration of the X-NUCLEO-LPMO1A board.

JP3 (Power Sel) on "USB"
JP4 (Decoupl) ON

JP1 on "Normal"
Remove JP9

Remove JP10

Connexions between CN14 and the Nucleo Board:

The Table 1 gives the wiring between the X-NUCLEO-LPMO1A and the Nucleo board.

X-NUCLEO-LPMO1A

Nucleo board

CN14 PIN 3 (VOUT +)

Left Pin on JP6

CN14 PIN 1 (GND)

GND (optional)

Table 1: PIN connections between the Nucleo and the LPMO1A module

1.2.3 Measurement via the Arduino Uno Connector
We can use the Arduino connector to plug the X-NUCLEO-LPMO1A over the Nucleo board.

We first remind the power scheme of the Nucleo and STM32.

JP6
+5V +3.3V
Regulator

VDDstvs2
VDDnucleo
VDDAsT™m32
IDD
VBATstm32

Once again, we will have to take JP6 off and power the STM32 with the X-NUCLEO-LPMO1A board
by using either VDDnycleo, VDDstms2, VDDAstms2 or VBATstms2 because there all connected together.
But only VDDAstm3; is present on the Arduino connector (CN3 Pin 8), so, if we want to use the X-
NUCLEO-LPMO1A Arduino connector, we have to provide the power supply through VDDAstus,. Be
careful not to be confused with all the labels because CN3 pin 8 is reported as AVDD on the Nucleo

Figure 4: Power of the STM32

board, and AREF on the X-NUCLEO-LPMO1A.

VDDsrm32

VDDNuc\eo
+5V +3.3V 1pe VDDAstm32 = AREF X-NUCLEO-LPMO1A

Regulator DD Provide and measure IDD

VBATSstm32

Figure 5: Power and measurement of the Nucleo board and STM32
Here are the configurations and connexions between the Nucleo and the X-NUCLEO-LPMO1A board:
Nucleo board:

m Remove JP6 (IDD)
m Check: JP5 on "U5V", ST-Link On

X-NUCLEO-LPMO1A: We follow the instruction of the documentation for JP9, JP10 and JP4

JP9 JP10 JP4
Power output on Output copnizzctors and AREF_ARD | 3V3_ARD Additional decoupling capacitor
jumper jumper jumper
Arduinot Uno AREF: CN3 pin8 oced Open: no decoupling capacitor
connector, .) close open
pin AREF GND: CN4 pin6 or pin7 Closed: 2.2 uF decoupling capacitor

Figure 6: Configuration of the X-NUCLEO-LPMO1A board

JP3 (Power Sel) on "USB"

JP4 (Decoupl) ON

JP1 on "Normal"

JP9 ON (to put the Power on the AREF/AVDD/VDDAsmv32 pin)
Remove JP10

1.3 STM32CubeMonitor-Power

STM32CubeMonitor-Power is the graphical tool for displaying the result of the measurement. You
can download the latest version from ST Website along with the USB COM port driver:

m STM32CubeMonitorPower: www.st.com/en/development-tools/stm32cubemonpwr.html
m USB COM port driver: www.st.com/en/development-tools/stsw-stm32102.html

We need to run the measurement once before programming the STM32, otherwise the power is
not provided to the MCU (via the CN14 connector and the Arduino connector) and the ST-Link can't
write it.

1.4 Debugging issues with low power

Entering low power mode is not straightforward for the debugging operation. The ST-Link
connection is easily lost. To prevent this, it's often better to chose the Run mode © , instead of the
Debug mode *

http://www.st.com/en/development-tools/stm32cubemonpwr.html
http://www.st.com/en/development-tools/stsw-stm32102.html

1.4.1 Debugging with low power modes
If you need to debug your application, you have to configuration some bits depending on the low
power mode you want to enter:

void HAL_DBGMCU_EnableDBGSleepMode (void);
void HAL_DBGMCU_DisableDBGSleepMode(void);
void HAL_DBGMCU_EnableDBGStopMode (void);
void HAL_DBGMCU_DisableDBGStopMode (void);
void HAL_DBGMCU_EnableDBGStandbyMode (void);
void HAL_DBGMCU_DisableDBGStandbyMode (void);

These functions have an influence on power consumption because it keeps the debug capabilities
of the MCU. Therefore, we must keep it in mind while measuring low and accurate current.

1.4.2 Fixing the ST Link
If the ST-Link seems not working anymore there are 3 options to resume the debug session:

1. Press the Reset Button while launching a debug session and release it when the ST-Link
seems to have overtaken the MCU.

2. Create a simple project (led blink without sleep mode) and generate the .bin executable file
(Project properties > C/C++ Build > Settings > Tool Settings > MCU Post Build Output >
Check "Convert to binary files"). You can program your MCU by dragging the .bin file in the
drive which opens in you file system when you plug your Nucleo board.

3. Use ST-Link utility to flash your MCU.

2 Processor modes

2.1 Running Mode
In this first section, we will measure the current consumption with the default project value in
STM32CubeMX. We measure the current when the microcontroller is executing instructions and
when it has its peripherals enable.

& With STM32CubelDE default value, create the following "hello world" program which
toggles the User Led (PA5) on the Nucleo board, then measure the current consumption
during 10 seconds.

Function

Code

main()

while (1)

}

{

HAL Delay(1000);
HAL GPIO TogglePin (GPIOA, GPIO PIN 5);

You should approximately find the following values. On each cell, you can write you own result for
comparison.

Test Conditions Current measurement Current measurement
STM32F446 STM32L073
Default Mode (CubeMX)
Led OFF 17 000 pA 625 pA
Default Mode (CubeMX)
Led ON 20 500 pA 3125 pA

Table 2 : Initial current consumption on STM32F446 and STM32L073 in running mode

What do we see?

We obviously see that the power consumption depends on the LED state. Indeed, the
microcontroller's GPIOA Pin 5 powers the User Led. Here, we don't use any low power mode, which

means that during the HAL_Delay(1000), the microcontroller resumes its execution.

2.2 Low Power Modes

We will now measure the current consumption while the microcontroller goes in Low Power mode.

There are two main "Low power" modes in ARM Cortex M microcontroller.

m Normal Sleep Mode
m Deep Sleep Mode

| 10

These Low Power modes (Normal and Deep sleep) are defined by ARM but are often specifically
extended by the manufacturer, which is ST in our case. Obviously, STM32L have more low power
capabilities than STM32F.

Processor Modes

A A

Running Low Power

A

Normal Sleep Deep Sleep

Figure 7: Running and Low Power modes defined by ARM

The choice between the "Normal Sleep" mode and the "Deep Sleep" mode depends on the
SLEEPDEEP bit (ARM Generic User Guide). The SLEEPDEEP bit is part of the SCR (System Control
Register).

System Control Register

The SCR controls features of entry to and exit from low power state. See the register
summary in Table 4-10 on page 4-11 for its attributes. The bit assignments are:

31 54i3 2 10

SEVONF’ENDJ
Reserved
SLEEPDEEP

SLEEPONEXIT
Reserved

Reserved

Figure 8: The System Control Register of ARM Cortex MO/M4 processors
For example, our STM32F446 has three low power modes (see Figure 9):

m Normal Sleep: Sleep
m Deep Sleep: Stop and Standby

| 11

Effecton 1.2V | Erecton
Mode name Entry Wakeup domain clo.cks Vppdomain | Voltage regulator
clocks
Slee WEFI or Return Anv interrupt CPU CLK OFF
(Sletf now from ISR Y P no effect on
or SI:ep-on- other clocks or None ON
exit) WFE Wakeup event analog clock
sources
PDDS andLPDS ON orin low- power
bits + Any EXTI line (configured mode (de enF():ls on
Stop SLEEPDEEP bit in the EXTI registers, P
) - PWR power control
+ WFI or Return |internal and external lines) :
register (PWR_CR)
from ISR or WFE HSI and
WKUP pin rising edge, All 1.2 V domain HSE
. RTC alarm (Alarm A or clocks OFF oscillators
PDDS bit + OFF
. Alarm B), RTC Wakeup
SLEEPDEEP bit
Standby event, RTC tamper OFF
+ WF orReturn events, RTC time stam
from ISR or WFE : np
event, external reset in
NRST pin, IWDG reset

Figure 9: Summary of low power modes in a STM32F446 - Reference Manual

The STM32L073 has five low power modes (see Figure 10)

m Normal Sleep: Low-power run, Sleep and Low-power sleep
m Deep Sleep: Stop and Standby.
Effect on Vpp
Mode name Entry Wakeup Edf:;‘;:;ic:‘"c‘llggsg domain Voltage regulator
clocks
Low-power LPSDSR and The regulator is forced In low-power
P LPRUN bits + in Main regulator (1.8 None None P
run : mode
Clock setting V)
Slee WFI or Return Anv interrunt CPU CLK OFF
P from ISR y P no effect on other
(Sleep now or clocks or analog None ON
Sleep-on-exit) WFE Wakeup event clock sources
LPSDSR bits + CPU CLK OFF
Low-power WFI or Return Any interrupt no effect on other
sleep (Ssljep from ISR clocks or analog None In Iow-gower
now or Sleep- mode
on-exit) LPSDSR bits + Wakeuo svent clock sources,
WFE P Flash CLK OFF
PDDSb’i:;PJrSDSR Any EXTI line
. (configured in the EXTI In low-power
Stop SLEEPDEEP bit +) .
registers, internal and mode
WEFI, Return from external lines)
ISR or WFE HsI16(M HSE
All Veore ’
Standby WKUP pin rising edge, | domain clocks aﬂd”'\QS'
oscillators
PDDS bit + RTC alarm (Alarm A or OFF OFF
. Alarm B), RTC Wakeup
SLEEPDEEP bit +
event, RTC tamper OFF
WF, Return from event, RTC timestam
ISR or WFE ’ P
event, external reset in
NRST pin, IWDG reset

Figure 10: Summary of low power modes in a STM32L073 (Reference Manual)

| 12

2.2.

1 Entering and exiting low power mode

The Figure 9 and Figure 10 give the action to enter each low power mode (column Entry), and the
actions which wakes up the processor (column Wakeup). We can notice that the deeper is the low
power mode, the fewer are wakeup possibilities.

For entering a low power mode, we have to use one of these instructions or features combines with
some bits configuration:

2.2.

m the wfi (Wait For Interrupt) instruction
m the wfe (Wait For Event) instruction
m the "Sleep on Exit" feature

2 Normal Sleep Mode

The Normal Sleep mode stops the processor clock, but all peripherals keep on running. On the
STM32 clock tree (Figure 11), that means:

m FCLK (Cortex Clock) stops
m All the other activated clocks run

» 84 To Power (MHz)
> HCLK to AHB bus, core,
memeory and DMA (MHz)
o 1 — 84 To Cortex System timer (MHz)
» 84 FCLK Cortex clock (MHz)
H. AHB Presca H H
AP aler
PCLK1 [. .
84 —ap 1 - 84 R 2 42 APB1 peripheral clocks (MHz)
X 2 »- 84 APB1 Timer clocks (MHz)
X2
B2 Pr 1
PCLK2
- 1 ‘ ad APB2 peripheral clocks (MHz)
w1 ™ 84 APB2 timer clocks (MHz)

Figure 11: Clock tree in STM32CubeMX

= Create the following application on the STM32F446, which goes in low power mode (Normal
Low Power - sleep) after each loop, using the wfi instruction.

Function Code
while (1) {
HAL Delay (1000);
. HAL GPIO TogglePin (GPIOA, GPIO PIN 5);
main() — = — =

HAL PWR EnterSLEEPMode (PWR MAINREGULATOR ON, PWR SLEEPENTRY WFI);

What do we see?

At the first sight, we don't see much difference and we don't really see that the microcontroller goes
into low power mode. That is because according to the Figure 9, the wakeup condition is "Any
interrupt". On the cortex M microcontroller, the SysTick Timer lauches a permanent interrupt every
millisecond (by default), so our application will jump out from low power mode only one millisecond
after entering it !

| 13

You can only see this behaviour if you choose the right sampling frequency in STM32CubeMonitor-
Power and if you zoom in the right area. It's also a good idea to reduce the value of the HAL_Delay
in the application (10 instead of 1000 for example).

Function Code

while (1) {
HAL Delay(10);
. HAL GPIO TogglePin (GPIOA, GPIO PIN 5);
main(} HAL PWR EnterSLEEPMode (PWR MAINREGULATOR ON, PWR SLEEPENTRY WFI);

You should approximately find the following values (Table 3).

Test Conditions STM32F446 STM32L073
oot B |0 15
st) |, o
Defl?eu;tOl\ﬁ?(;eRfJiunki)sg/l " 17000 kA PO
S T |, 0

Table 3: Current consumption of STM32 F4/L0 in different states

Results with the STM32F446:

First, it is interesting to notice that the GPIO are still working while the processor is in Normal Sleep
Mode. Indeed, the first state of the diagram below (LED ON / Low Power) shows that the processor
is in Low Power, but is still powering the LED through its GPIO.

LED Oh LEDOFF LED OFF LED QM
Low Powear Running Low Poweg Running

Current [pA)

Figure 12: Normal Sleep mode in a STM32F446 microcontroller

Result with the STM32L073:

We expect the same behaviour with the STM32L073, but obviously with different consumption
values.

| 14

2.2.3 Deep Sleep Mode

The Deep Sleep Mode stops the system Clock (SYSCLK) and switches off the PLL and flash memory.
ST extends the Deep Sleep Mode in two modes which depend on the PDDS bit (Power Down Deep
Sleep bit):

m Stop mode
m Standby mode

wfi, wfe, Sleep on exit

Low Power
DeepSleep Bit=0 DeepSleep Bit =1
Normal Sleep Deep Sleep
PDDS bit=0 PDDS bit=1
Stop Mode Standby Mode

Figure 13: The Stop and Standby modes

In STM32Lx series, there are even more modes as you saw in Figure 10. Obviously, the deeper is the
low power mode, the less power is consumed. However, there are two main drawback:

m There are less possibilities to wake up the microcontroller.
m The microcontroller takes longer to wake up.

We are not going to measure the power consumption in deep sleep now. Because whatever mode
we are using, we have a lot to improve in our application before working on the deep sleep mode.
Indeed, a low power application should never be waiting (HAL_delay) in running mode. In the next
chapter, we will reorganize our code and present a new application based on interrupts and we will
remove the LED, which consumes too much and prevents us to read very low current in deep sleep
mode.

| 15

3 Reducing the power consumption

3.1 Initial application

Our initial application is not using any low power features. We will implement them in the next
chapter and compare the current consumption after each improvement. Our simple application will
write the text "Test of Low Power Mode on STM32" on the USART2 every 10 ms (interrupts are
generated by TIM6 / APB1). The USART2 (APB1) baud rate is at 115200 bauds.

Function Code

HAL TIM Base_Start IT(&htim6);
While (1) {

// Nothing to do

}

main()

uint8_t textApp[l="Test of Low Power Mode on STM32\r\n";

TIMG6 Interrupt routine void HAL TIM PeriodElapsedCallback (TIM HandleTypeDef *htim) {
HAL UART Transmit (&huart2, textApp, sizeof (textApp),1000);

}

3.1.1 Timer configuration on the STM32F446

As we can see in the block diagram of the STM32F446 (Figure 67 in appendices), the APB1 Timer
Clock runs the Timer 6. Its value is 84 MHz in the default configuration.

HCLEK (MHz
APB1 Prescaler

84 o /2

1 %2 B a4 APB1 Timer clocks (MHz)

Figure 14: Default value of HCLK and APB1 Timer clock in STM32F446
The interrupt time is calculated by this formula:

Int Lt Prescaler +1 10
nterrupt time = =10ms
p (Counter Period + 1) X fycik

To have the 10ms interrupt with the STM32F446, we need to configure the TIM6 with the following
values:

m Prescaler =41999
m Counter Period = 19

3.1.2 Timer configuration on the STM32L073

As we can see in the block diagram (Figure 68 in appendices), the APB1 Timer Clock runs the Timer
6. Its value is 2.097 MHz in the default configuration.

| 16

X1 - 2.097 APB1 timer clocks (MHz)

{ 2.097 }_.

HCLEK (MHz)
Figure 15: Default value of HCLK and APB1 Timer clock in STM32L073

The interrupt time is calculated by this formula:

- i Prescaler +1 — 10
nterrupt time = (Counter Period + 1) x fycLx "

To have the 10ms interrupt with the STM32L073, we need to configure the TIM6 with the following
values:

m Prescaler = 2096
m Counter Period =9

3.1.3 Measurements

In this application, the microcontroller never goes in Low Power Mode. You can find the following
average consumptions for both microcontrollers.

Test Conditions Microcontroller | Sleep Mode | Average consumption
Default Mode (CubeMX)
with HCLK = 84 MHz (HSI)
Default Mode (CubeMX) STM32L073 None 520 pA
with HCLK to 2.097 MHz (MSI)

Table 4: Average current consumption without Sleep mode

STM32F446 None 16,95 mA

What do we see?

Every 10ms, the message "Test of Low Power Mode on STM32" is printed out on the serial link.
During the transmission, the power consumption increases.

Current ([pd)

Figure 16: Power consumption on STM32F446 with initial values

| 17

3.2 Using the "Sleep On Exit" Feature

3.2.1 Whatis the Sleep On Exit Feature
The "Sleep On Exit" is one of the three ways to enter the Sleep mode. ARM Cortex processors have
a feature which allow the processor to enter Sleep Mode as soon as the MCU exits an ISR (Interrupt

Sub-Routine).

When and how to use it?

It is useful to use it only when the processor runs the whole application in an interrupt routine. As

soon as the Sleep On Exit i
any instructions to use it.

s enabled, any code outside the ISR will be ignored. There is no need of
The processor enters itself in Sleep mode after the interrupt routine.

However, we have to configure this feature at the start of the application by setting the
SLEEPONEXIT bit (see ARM Generic User Guide) in the System Control Register presented in the
Figure 8. We can use the HAL function HAL_PWR_EnableSleepOnExit(); which simply sets the

SLEEPONEXIT bit.
Function Code
HAL TIM Base_Start IT(&htim6);
HAL PWR EnableSleepOnExit () ;
main()

While (1) {
// Nothing to do
}

TIMG6 Interrupt routine

uint8 t textApp[]="Test of Low Power Mode on STM32\r\n";

void HAL TIM PeriodElapsedCallback (TIM HandleTypeDef *htim) {
HAL UART Transmit (¢huart2, textApp,sizeof (textApp),1000);
}

It is important to configure the Sleep On Exit feature at the end of the initialization,
otherwise an interrupt can occur, and we will never come back to the main function.

3.2.2 Initial application

with SLEEPONEXIT

On our application, we are going to use the SLEEPONEXIT feature to enter a Normal Sleep Mode
when returning from the interrupt.

= Add the HAL_PWR_EnableSleepOnExit() in you main, just before the while loop.

You can find the following

average consumptions for both microcontroller.

Test Conditions

Microcontroller | Low Power Mode | Average consumption

Default Mode (CubeMX)
with HCLK = 84 MHz (HSI)

STM32F446 None 16,95 mA

Default Mode (CubeMX)
with HCLK = 84 MHz (HSI)

Sleep On Exit

STM32Fa4e Normal Sleep Mode

11,49 mA

Default Mode (CubeMX)

with HCLK to 2.097 MHz (MSI) STM32L073 None 220 pA
Default Mode (CubeMX) Sleep On Exit
with HCLK to 2.097 MHz (MSI) STM32L073 Normal Sleep Mode 360 pA

Table 5: Average current consumption with Sleep mode (STM32CubeMX default configuration)

| 18

What do we see?

You should clearly see the execution of the UART transmission every 10 ms. Between each
transmission, the microcontroller is in Low Power mode. On STM32F446, the average power
consumption drops from 16,95 mA to 11,49 mA which is a huge improvement, without
compromising the application.

e i M - 1k ™

Current (ph)

2000
£500
£000

6 Ll et N0 00 T [X O O It I I APV [N SOV O

Figure 17: Current consumption in running and Low Power mode (STM32F446)

3.3 Effect of the CPU frequency

We keep the same applicatio, but we want to know how the clock frequency of the CPU affect the
power consumption. We are going to change the HCLK clock at the following values:

m STM32F446: 2 MHz, 32 MHz, 84 MHz (Initial value), 180 MHz (max value).
m STM32L073: 2,097 MHz (initial value), 32 MHz (max value)

For comparison purpose, we will change only the HCLK Clock. You will therefore have to recalculate
the TIM6 interrupt overflow value if the "APB1 Timer Clock" changes. For example, with the
STM32F446, the initial HCLK value is 84 MHz and the APB1 Timer Clock is also 84 MHz (See Figure
14). When we change the HCLK clock value to 32 MHz, the APB1 Timer clock changes to 32 MHz.

HCLK (MHz)
) APB1 Prescaler

32 - D w

¥ 2 - 32 APB1 Timer clocks (MHz)

) Prescaler +1
Interrupt time = =10ms

(Counter Period + 1) x fycix

To have the 10ms interrupt with the STM32F446, we need to configure the TIM6 with the following
values:

m Prescaler =31999
m Counter Period =9

| 19

You can find the following average consumptions for both microcontroller with and without the

"Sleep On Exit" low power mode.

Test Conditions

Microcontroller

Low Power Mode

Average
consumption

Default Mode (CubeMX)

Change HCLK to 180 MHz (HSI) STM32F446 None 38,22 mA
ChaDanjﬂEIT((igel(sc()ul?llex)((LSI) STM32F446 Noriea?F;Igng)l\(/lltode 23,71 mA
vlv)ifniaﬁlctmidsi(&u:: m) STM32F446 None 16,95 mA
A s | STVIRHE | e e | 1149mA
Ch::;aeu|-||tc'\LA|<o foe 3(3:\22':'()350 STM32F446 None 8,46 mA
ChaDr?;aeul-erI:_AKoSoe 3(?:32';/'()35” STM32F446 NorsrlneaeIF;Ice)ng)l\(/lltode 6,48 mA
Chz(:mz: lﬁc“fﬁii (zcll\an:zM()H()sn) STM32F446 None 3,84 mA
Default Mode (CubeMX) STM32F446 Sleep On Exit 3,62 mA

Change HCLK to 2 MHz (HSI)

Normal Sleep Mode

Table 6: Current consumption for different HCLK frequencies and sleep mode (STM32F446)

Test Conditions

Microcontroller

Low Power Mode

Average
consumption

Default Mode (CubeMX)

Change HCLK to 32 MHz (HSE) STM32L073 None 6,64 mA
Default Mode (CubeMX) Sleep On Exit

Change HCLK to 32 MHz (HSE) STM32L073 Normal Sleep Mode 4,80 mA
Default Mode (CubeMX)

with HCLK to 2.097 MHz (MSI) STM32L073 None >20 pA
Default Mode (CubeMX) STM32L073 Sleep On Exit 360 A

with HCLK to 2.097 MHz (MSI)

Normal Sleep Mode

Table 7: Current consumption for different HCLK frequencies and sleep mode (STM32L073)

Note: We had to change the clock source from MSI to HSE to reach 32MHz on the STM32L073.

With all this values, we can plot the variation of the current consumption depending on the HCLK
clock. The plot has been made when the Sleep On Exit features is disable.

| 20

Influence of HCLK on consumption
45
40
35
30 7
25 e
20 7

15 -

Current consumption
\

10 -

2 32 84 180
HCLK Frequency

== = STM32F446 eesesee STM32L073

What we should keep in mind?

We should always consider reducing the microcontroller clock to its minimum to improve the power
consumption.

3.4 Effect of the temperature
The temperature has a real effect on the power consumption. It is difficult to measure it without a
specific oven but the datasheet gives us interesting values.

| 21

Max(®
Symbol Parameter Conditions | f MHz T Unit
y ek (MHz) yp Ta= Tp= Ta=
25°C | 85°C | 105°C
180 86 93.0 115.0 125.0
168(5) 79 85.1 11.2 177
150 73 79.6 104.8 111.2
External clock, 1440) 68 735 97.3 103.3
PLL ON, 120 54 593 79.7 847
all peripherals
enabled®®) 90 42 4723 | 6550 | 70.10
60 29 337 495 53.4
30 16 20.8 34.0 37.4
25 13 18.4 31.2 345
16 8 13.8 25.0 28.3
HSI, PLL OFF, 8 5 10.8 21.1 242
all peripherals
enabled(3@) 4 3.0 9.1 18.9 22.0
Supply 2 2.1 8.1 17.8 20.9
oo current in mA
RUN mode 180 46 55.0 75.0 86.0
168 43 496 67.5 726
150 41 482 65.8 70.8
External clock, 144() 38 436 61.9 66.8
PLL O_N ! 120 32 373 53.7 58.0
all Peripherals
disabled® 90 26 30.7 46.0 50.0
60 18 2238 364 40.1
30 10 14.9 271 30.2
25 9 1355 | 2540 | 28.54
16 5 11.1 218 25.0
HSI, PLL OFF, 8 3 95 19.4 225
all peripherals
disabled® 4 24 8.34 18.10 | 2117
2 1.8 777 17.39 | 20.50

Figure 18: Current consumption depending on the temperature (Datasheet STM32F446)

However, we can set up a rough test by using a heater or a basic hairdryer on the Nucleo board and
notice that the power consumption increases at the same time as the temperature. The result is
presented on the Figure 19. For this test, you can use any application. We simply used the
STM32F446 with an empty while(1) loop, and without any peripheral or interrupt enabled.

| 22

10500

10250

125 15 175 20 225
Time (s}

Figure 19: Raise of the current consumption when the temperature increases

What do we see?

We can clearly notice a raise of consumption when we provide heat on the microcontroller five

seconds after the start.

3.5 Effect of the Clock Source

3.5.1 Clock sources on a STM32F446
Two different high-speed clocks can source the SYSCLK clock:

m HSl oscillator clock (High Speed Internal)
m HSE oscillator clock (High Speed External)

The RTC or watchdog can use other low speed clock:

m LSl oscillator clock (Low Speed Internal)
m LSE oscillator clock (Low Speed External)

3.5.2 Clock sources on a STM32L073

STM32L073 has exactly the same clock source than the STM32F446 plus some others:

Three different high-speed clocks can source the SYSCLK clock:

m MSI oscillator clock (MultiSpeed Internal)
m HSl oscillator clock (High Speed Internal)
m HSE oscillator clock (High Speed External)

The RTC or watchdog can use other low speed clock:

m LSl oscillator clock (Low Speed Internal)
m LSE oscillator clock (Low Speed External)

| 23

The specific USB peripheral can have its own internal clock:

m RC48

3.5.3 HSlclock
On the STM32F446 and STM32L073 microcontrollers, HSI is a 16MHz internal RC oscillator. The
system clock can use it directly, or through PLL.

m Advantage: low cost (no need of crystal) and faster startup time than the HSE.
m Drawback: less accurate.

The STM32F446 datasheet provide the HSI accuracy (Figure 20).

Symbol Parameter Conditions Min | Typ | Max | Unit
fus Frequency - - 16 - MHz
User-trimmed with the RCC_CR i i 1 o
register(z) ¢
Accuracy ofthe HSI | T, =~ 40 to 105 °C3) -8 - 45 %
ACChsi oscillator A
Tpa=-10t0 85 °C® -4 - 4 %
Tp=25°CH# -1 - 1 %
2y | HSI oscillator
taurisy startup time i i 22 4 HS
(2) | HSI oscillator i i
lop(Hs) power consumption 60 80 KA

Figure 20: HSI Oscillator characteristics (Datasheet STM32F446)

For example, we want to know how much time a clock would derive during one day if we consider
an ambient temperature of 25 °C when using the HSI clock.

Answer: At 25°C, the accuracy is 1%. There is 24x3600=86400 seconds in on day. The clock will derive
of 86400x0.01=864 seconds in on day, hence 14'24" per day.

3.5.4 HSE clock
HSE is an external clock, which can be generated from:

m An external user clock (default case of the Nucleo board)
m An external crystal or ceramic resonator

| 24

- -
External clock] ‘—'
T (HI-2)
External
source

OSC_IN 0OsC_ouT
[] []
Crystal/ceramic T T
resonators | ! I D I l I

Cry Cro

N Load
capacitors

ST

Figure 21: Clock sources (HSE) - Reference Manual STM32F466

m Advantage: As accurate as the external component is (crystal or ceramic resonator)
m Drawback: Expensive, higher startup time than HSI

Symbol Parameter Conditions Min | Typ | Max | Unit
fosc_ N Oscillator frequency - 4 - 26 MHz
Rr Feedback resistor - - 200 - kQ
VDD=3.3 V,
ESR=30 Q, - 450 -
C, =5 pF@25 MHz
Ibp HSE current consumption HA
VDD=3.3 V,
ESR=30 Q, - 530 -
C =10 pF@25 MHz
ACC;se® | HSE accuracy - 500 | - | 500 | ppm
Gyy,_crit_max | Maximum critical crystal g Startup - - 1 mA/N
tSU(HSE(3) Startup time Vpp is stabilized - 2 - ms

Figure 22: HSE oscillator characteristics — datasheet STM32F446

On our the Nucleo board, the 8 MHz oscillation on HSE is provided by the ST-Link uC. There is no
crystal on the board but the footprint is available.

| 25

Default: closed

MCO
SB50 Clock coming from
ST-Link MCU
|||—|
20pF[N/A]
(1 ()pl")[.\J ""A] STM32
C34 PFO /PDO/PHO 5
'|II I A PF1 /PD1/PH1 6 gggfl(?u"[
')l N/A] N)
F0pF[N/A] N

Figure 23: HSE configuration on the Nucleo board

With this Nucleo board, we are using the "External User clock" mode (as explained in Figure 21).
This mode is selected in CubeMX in the configuration of the STM32 in System Core > RCC > Mode >
High Speed Clock (HSE) > Bypass Clock source.

On our Nucleo board, the X3 oscillator can run:

m From 4 to 26 MHz on the STM32F446
m From Oto 32 MHz on the STM32L073

Crystals can be a very expensive component in an electronic design. We have to know the accuracy
we want before buying it. If we check on 4 different crystals the average value of the frequency
tolerance, the price, and how much time a clock could derive during one day, we have to following
results with the following components:

1. a 16 MHz ceramic resonator
2. a16MHz crystal
3. a 16MHz crystal oscillator TCXO (Temperature Compensate Xtal Oscillator)
4. a 16MHz crystal oscillator OCXO (Oven Controled Xtal Oscillator)
Clock Source Approx unit price Tolerance Time shift (1day)
1. Ceramic resonator 0,25€ 0.5% 7 min 12s
2. Crystal 0,4 € (bigger) 30 ppm 2,65
3. Crystal oscillator (TCXO) 2€ 2,5 ppm 216 ms
4. Crystal oscillator (OCXO) 100 € 20 ppb 1,73 ms
Table 8: Approximate price and Tolerance of different clock source
3,55 LSl

The LSl is an RC oscillator, which can still run even in Stop and Standby mode for the independent
watchdog (auto-wake up). The clock frequency is around 32 kHz and the accuracy is very poor.

| 26

Table 42. LS| oscillator characteristics (1)

Symbol Parameter Min Typ Max Unit

flg @ Frequency 17 32 47 kHz
tsuwsn™ | LSl oscillator startup time - 15 40 us
loows)y™® | LSl oscillator power consumption - 0.4 0.6 HA

Table 9: LSl oscillator characteristics

3.5.6 LSE
The LSE clock can be a low-speed crystal or a ceramic resonator. Its common value is 32,768 kHz.

On the Nucleo board STM32L073, the LSE crystal reference is "ABS25-32.768KHZ-6-T". The Table 10
summarizes its features.

Component Approx unit price Tolerance Dimension
ABS25-32.768KHZ-6-T 0,1€ 20 ppm 8 mm/3mm
Table 10: Characteristics of the ABS25-32.768KHZ-6-T Crystal

3.5.7 MSI (Multi Speed Internal) Clock
The MSlI clock is an internal RC oscillator. Its frequency range is tuned by software. Seven frequencies
are available from 65 536 kHz to 4.194 MHz.

Why the MSI?

Indeed, it has the same purpose as the HSI, which is also a RC oscillator. If we look at the datasheet
we can learn that the MSI can be used at lower power mode than the HSI (O: Optional, Y: Yes, --:
Not Available).

Low- Low- Stop Standby
IPs Run/Active Sleep power power Wakeup Wakeup

run | sleep capability capability

High Speed 3

Internal (HSI) © 0 - - -

High Speed

External (HSE) © 0o 0 0 - -

Low Speed Internal

(LSI) O 0 o o) o o

Low Speed

External (LSE) © 0 o 0 0 o}

Multi-Speed

Internal (MSI) 0 o Y Y - -

Figure 24: Clock availability depending on the working modes

But the MSI oscillator is even worse than HSI about accuracy, so you need to consider this to select
the right clock source between HSI and MSI.

3.5.8 HSI48 (High Speed Internal 48 MHz) Clock
HSI48 is an internal RC oscillator used for USB purposes.

| 27

3.5.9 Power consumption
We can make some measurement with difference clock source. For that purpose, we will use the
STM32L073. We first remind the previous values measured for our application.

Average

Test Conditions Microcontroller Low Power Mode .
consumption

Default Mode (CubeMX)

with HCLK to 2.097 MHz (M) (1) STM32L073 None 520 pA

Default Mode (CubeMX) STM32L073 Sleep On Exit

with HCLK to 2.097 MHz (MSI) (1) Normal Sleep Mode 360 uA

Table 11: Current consumption depending on the clock used

Then we change the clock sources and use the path (2), (3), (4) and (5).

System Clock Mux

. _—— ()= wsl [
2007~ 5 >®
WSIRC] G2 e = Hs”io 32 MHz ma
e esEe . R) S HSE b 2007 lem /1 2007 |ap
T| HSE ' > e :
oH SYSCLK (MHz) AHB Prescaler HCLK (MHz)
PLLCLK
o PLL Source Mux /"
e = —
_ Hx8 ~m 2 ~
*PLLMUl | /PLLDIv

Figure 25: Clock sources for the STM32L073

The values are stored in the table below. We use a 2MHz clock because it is not possible to generate
2.097 MHz. Don't forget to change the TIM6 Interrupt time with the right values (Prescaler = 1999
and Counter Period = 9).

- . Average
Test Conditions Microcontroller | Low Power Mode g.
consumption
Sleep On Exit
Default Mode (CubeMX)
With HCLK to 2 MHz (HSI 16 from HSI RC) (2) STM32L073 Normal Sleep 860 pA
Mode
Sleep On Exit
Default Mode (CubeMX)
With HCLK to 2 MHz (HSE from HSE) (3) STM321073 Normal Sleep >00 WA
Mode
Sleep On Exit
Default Mode (CubeMX)
With HCLK to 2 MHz (PLLCLK from HSE) (4) STM32L073 Normal Sleep 700 pA
Mode
Sleep On Exit
Default Mode (CubeMX)
With HCLK to 2 MHz (PLLCLK from HSIRC) (5) | ' V32L073 Norm' dse'eep 1200 pA

What we shall keep in mind?

The clock source has an effect on power consumption. We can summarize it in a table.

| 28

MSI HSI HSE
Consumption Excellent High power Average
Accuracy Very poor Poor Good
Cost No additional cost No additional cost Need an oscillator

We can also notice that using the PLL increase the power consumption.

3.6 Effect of the USART2 Baudrate

We can see on the STM23CubeMonitor-Power the moment when the CPU is using the UART and
when it is entering the low power mode. Transferring the data faster with the UART will forward the
moment the CPU is entering the low power mode. Therefore, it will save more power.

On the default configuration (HCLK = 84 MHz / HSI) on the STM32F446 MCU, we are going to
increase the Baudrate to 230400 bauds and compare with the previous power consumption. Here
are the previous measurement:

Average

Test Conditions Microcontroller Low Power Mode .
consumption

Default Mode (CubeMX)
with HCLK = 84 MHz (HSI) STM32F446 None 16,95 mA
BaudRate = 115200

Default Mode (CubeMX) Sleep On Exit

with HCLK = 84 MHz (HSI) STM32F446 Normal Sleen Mode 11,49 mA
BaudRate = 115200 P
Table 12: Previous measurement with default configuration.
New measurement values are stored in the table below.
Average

Test Conditions Microcontroller Low Power Mode]
consumption

Default Mode (CubeMX)
with HCLK = 84 MHz (HSI) STM32F446
BaudRate = 230400

Sleep On Exit

2 mA
Normal Sleep Mode 9,32m

Current consumption depending on the USART2 Baud Rate

We could even go faster and increase the Baudrate but for the next step, we will keep the Baudrate
to 230400.

What do we see?

We can notice that the MCU spends less time sending data through the USART, so the average
current is reduced.

| 29

18000 H\W 18000 m?'
17500 17500
17000
16500
16000
15500
15000
14500
14000
13500
12000
12500
12000
11500
11000
__ 10500
3 10000
= o500
9000
8500

17000
16500
16000
15500
15000
12500
14000
13500
13000
12500
12000
1500
1000

10500

3 10000

9500

9000

8500

EoE0 5000

7500 7500

TO0D =

7000
6500 |-||»LJJ-|" 5500 LH*L‘ ,W
G000

Current
Current

5000

Figure 26: Transmission time at 115200 (left) and 230400 (right) bauds

3.7 Effect of the APB1 peripheral frequency

So far, we have seen that we can reduce the power consumption if we lower the clock frequency
(HCLK) for the CPU. There is the same possibility for each enabled peripherals. We are using the
USART2 at 230400 bauds and the USART2 work with the APB1 bus. By default, the "APB1 Peripheral
Clock" is at 42 MHz.

HCLK (MHz)
APB1 Prescaler

PCLK1
84 P /> = 42 APB1 peripheral clocks (MHz)
L >

84 APB1 Timer clocks (MHz)

X2

Figure 27: The actual APB1 peripheral clock frequency (STM32CubeMX)

We can reduce the "APB1 Peripheral Clock" at 5.25 MHz. The maximum Baudrate is now limited but
we can still reach 230400 bauds.

HCLK (MHz)
APB1 Prescaler

84 P> /16 e 525 APB1 peripheral clocks (MHz)

E 2 10.5 APB1 Timer clocks (MHz)

Figure 28: The target APB1 peripheral frequency (CubeMX)

The TIMG6 clock has also change, so we also have to change the TIM6 Prescaler (10499) and the TIM6
Counter Period (9).However, the overall power consumption is now reduced as we can see in the
table below.

| 30

Test Conditions

Microcontroller

Low Power Mode

Average
consumption

Default Mode (CubeMX)
with HCLK = 84 MHz (HSI)

Sleep On Exit

TM32F44 2 mA
BaudRate = 230400 STM3 6 Normal Sleep Mode 932m
APB1 Peripheral Clock = 42 MHz
Default Mode (CubeMX)
with HCLK = 84 MHz (HS!) STM32F446 Sleep On Exit 779 mA

BaudRate = 230400
APB1 Peripheral Clock = 5.25 MHz

Normal Sleep Mode

Table 13: Power consumption depending on the peripheral clock frequency (APB1)

3.8 Effect of the USART2 mode
The USART2 peripheral is configured with the RX and TX capabilities.

Data Direction
Over Sampling

Advanced Parameters

Receive and Transmit
16 Samples

Figure 29: CubeMX configuration of the USART2

However, in our application, we are not using the reception. Therefore, we can disable it in order to
remove the clock and the power to the reception hardware part. It is not straightforward to see the
improvement in power consumption, so we can say that it is not a major issue.

New measurement values are stored in the Table 14.

Test Conditions

Microcontroller

Low Power Mode

Average
consumption

Default Mode (CubeMX)
with HCLK = 84 MHz (HSI)
BaudRate = 230400
APB1 Peripheral Clock = 5.25 MHz
Receive and Transmit

STM32F446

Sleep On Exit
Normal Sleep Mode

7,79 mA

Default Mode (CubeMX)
with HCLK = 84 MHz (HS!)
BaudRate = 230400
APB1 Peripheral Clock = 5.25 MHz
Transmit only

STM32F446

Sleep On Exit
Normal Sleep Mode

7.75 mA

Table 14: Current consumption depending on the USART2 configuration

3.9 Effect of USART2 Clock gating

Itis up to the programmer to enable the peripherals when the application needs it. When, we don't
need it any more, it worth to disable it by removing its clock. This action is called "clock gating".

Which clock can we stop in our application?

m About The TIM6 clock: We cannot stop this clock because this peripheral is always running
(either during the interruption or during the sleep mode). No clock gating is applicable on

this peripheral.

| 31

m About The USART2: We use the USART2 only during the ISR, so we can try to disable this
clock before entering the Sleep mode, and enable it back again when waking up from the
sleep mode, just before sending the data.

We could use the

HAL function

__HAL_RCC_USART2_CLK_ENABLE() and

__HAL_RCC_USART2_CLK_DISABLE() to enable and disable the peripheral clock. The nice thing with
STM32 is that it automatically runs this behaviour if we use the "RCC APB1 peripheral clock enable
in low power mode" register. This allows the processor to automatically stop the USART2 clock
when entering the low power mode and start it again when going back in running mode.

6.3.18 RCC APB1 peripheral clock enable in low power mode register
(RCC_APB1LPENR)

Address offset: 0x60

Reset value: 0x3FFF C9FF

Access: no wait state, word, half-word and byte access.

Bit 17 USART2LPEN: USART2 clock enable during Sleep mode
This bit is set and cleared by software.

0: USART2 clock disabled during Sleep mode
1: USART2 clock enabled during Sleep mode

Figure 30: The RCC APB1 peripheral clock enable in low power mode register

This bit is configured by the Macro: __HAL_RCC_USART2_CLK_SLEEP_DISABLE()

Function Code
__HAL RCC_USART2 CLK SLEEP DISABLE() ;
HAL TIM Base_Start IT(&htim6);
) HAL PWR EnableSleepOnExit() ;
main() While (1) {
// Nothing to do
}

New values are stored in the table below.

Test Conditions

Microcontroller

Low Power Mode

Average
consumption

Default Mode (CubeMX)
with HCLK = 84 MHz (HSI)
BaudRate = 230400
APB1 Peripheral Clock = 5.25 MHz
Transmit only
No Clock Gating

STM32F446

Sleep On Exit
Normal Sleep Mode

7.79 mA

Default Mode (CubeMX)
with HCLK = 84 MHz (HSI)
BaudRate = 230400
APB1 Peripheral Clock = 5.25 MHz
Transmit only
Clock Gating on USART2

STM32F446

Sleep On Exit
Normal Sleep Mode

7.77 mA

Table 15: Current consumption with or without clock gating on USART2

| 32

3.10 Effect of the GPIO configuration

When the GPIO are unused, we usually set the GPIO pin in digital input mode. But by using analog
input instead of digital input, we can save more power because that disables the Smith Trigger and
therefore reduce the overall power consumption.

% Keep the unused pin as analog: CubeMX > Project Manager Tab > Code Generator >
Hal_Settings > Set all free pin as analogs.

New values are stored in the table below.

Test Conditions

Microcontroller

Low Power Mode

Average
consumption

Default Mode (CubeMX)
with HCLK = 84 MHz (HSI)
BaudRate = 230400
APB1 Peripheral Clock = 5.25 MHz
Transmit only
Clock Gating on USART2
Unsuded PINs as Digital INPUT

STM32F446

Sleep On Exit
Normal Sleep Mode

7.77 mA

Default Mode (CubeMX)
with HCLK = 84 MHz (HSI)
BaudRate = 230400
APB1 Peripheral Clock = 5.25 MHz
Transmit only
Clock Gating on USART2
Unused pin as analog

STM32F446

Sleep On Exit
Normal Sleep Mode

6.85 mA

Table 16: Current consumption depending on the unused GPIO configuration

3.11 Effect of the SysTick interrupt

In our application, the SysTick Timer wakes up the MCU every 1 ms without doing any relevant
actions. The Figure 31 shows the consumption peaks at each wake up. The behaviour is very short
and the sampling time of our monitor is probably not fast enough to catch the entire pulse.

| 33

Current (A

e ey
|

ek 1 AN AR i
M R LT LT
(RIALAARRIAL

SysTick IT

Figure 31: SysTick IT every 1 ms (STM32F446)

We could suspend the SysTick Timer before going into the Sleep Mode, and resume it when the
application is back in running mode. For that purpose, we use the following HAL functions.

m HAL_SuspendTick(); // At the end of the interrupt
m HAL_ResumeTick(); // At the beginning of the interrupt

Function

Code

TIMG6 Interrupt routine

uint8_t textApp[]="Test of Low Power Mode on STM32\r\n";

void HAL TIM PeriodElapsedCallback (TIM HandleTypeDef *htim) {
HAL ResumeTick();

HAL UART Transmit (&¢huart2, textApp,sizeof (textApp),1000);
HAL SuspendTick() ;

We can see that there is no Tick IT anymore during the sleep mode. New consumption values are
stored in the table below.

| 34

Test Conditions Microcontroller Low Power Mode Average
consumption

APB1 Peripheral Clock = 5.25 MHz Sleep On Exit

Default Mode (CubeMX)
with HCLK = 84 MHz (HSI)
BaudRate = 230400

Transmit only STM32F446 Normal Sleep Mode 6.85mA

Clock Gating on USART2
Unused pin as analog
SysTick always ON

APB1 Peripheral Clock = 5.25 MHz Sleep On Exit

Default Mode (CubeMX)
with HCLK = 84 MHz (HSI)
BaudRate = 230400

Transmit only STM32F446 Normal Sleep Mode 6.55mA

Clock Gating on USART2
Unused pin as analog
SysTick OFF during Sleep Mode

Table 17: Current consumption depending on SysTick IT in Sleep Mode (STM32F446)

3.12 Effect of using USART Interrupt

In our application, each time we send a byte through the USART, we wait for the transfer to be
completed in pooling mode. This is a waste of time because the MCU stays in Running mode whereas
it should wait in Low power mode. We will use the USART interrupt to wake up the MCU as soon as
a new data is ready to be transmitted. The STM32 will spend most of its time in Low Power mode.

However, we need to change our previous Low Power configuration because when the STM32 goes
to sleep, we configured earlier the clock gating on the USART2. Which means that the USART was
disabled in Sleep mode. That is not the case anymore. So, for the next experiment, we will remove
the clock gating and suppress the function __HAL_RCC_USART2_CLK_SLEEP_DISABLE() in our code.

Function Code

HAL TIM Base_Start IT(&htim6);
HAL PWR EnableSleepOnExit () ;

main() While (1) {

// Nothing to do
}

The USART2 interrupt needs to be enabled in CubeMX: USART2 > NVIC Settings > USART2 global IT.

Reset Configuration

; : — . : ;
@ Parameter Settings (\/) User Constants () NVIC Settings (\/) DMA Settings (~) GPIO Settings

NVIC Interrupt Table Enabled Preemption Priority Sub Priority

USART2 global interrupt | ‘

Figure 32: USART2 IT configuration

The ISR also needs to be updated to call the UART_Transmit_IT() instead of UART_Transmit().

| 35

Function Code

uint8_t textApp[]="Test of Low Power Mode on STM32\r\n";

void HAL TIM PeriodElapsedCallback (TIM HandleTypeDef *htim) {
TIM6 Interrupt routine HAL ResumeTick();
HAL UART Transmit_ IT (&huart2, textApp,sizeof (textApp));
HAL_SuspendTick();

New consumption values are stored in the table below.

Test Conditions Microcontroller Low Power Mode Average
consumption

Default Mode (CubeMX)
with HCLK = 84 MHz (HSI)
BaudRate = 230400
APB1 Peripheral Clock = 5.25 MHz

Transmit only STM32F446
Clock Gating on USART2
Unused pin as analog
SysTick OFF during Sleep Mode
USART Tx without interrupt

Sleep On Exit

. A
Normal Sleep Mode 6.55m

Default Mode (CubeMX)
with HCLK = 84 MHz (HSI)
BaudRate = 230400
APB1 Peripheral Clock = 5.25 MHz

Transmit only STM32F446
Clock-Gatingon-USART2
Unused pin as analog
SysTick OFF during Sleep Mode
USART Tx with interrupt

Sleep On Exit

Normal Sleep Mode >.64 mA

Table 18: Power consumption with or without using IT on USART2 TX

What do we see?

During transfer, we can clearly see that the processor exits from Sleep Mode as many times as there
are bytes to send. The running time is reduce, and so is the power consumption.

| 36

11500

11000

10500

10000

2500

2000

8500

2000

7500

000

5500

Current | pa)

5000
5500
5000
4500
4000

3500

Figure 33: USART2 TX with interrupt (STM32F446)

3.13 Effect of the DMA for sending the data

When we use the USART2 in interrupt mode for sending data, the USART interrupts the CPU as many
times as there are bytes to transmit. This job is typically what a DMA can perform without disturbing
the CPU. In that experiment, everything will be done in Low Power mode while the DMA will deal
with the byte transfer. The STM32 will be woken up only to launch the transfer, and to be noticed
at the end of it.

The USART2 DMA needs to configured in CubeMX: USART2 > DMA Settings.

Parameter Settings User Constants MNVIC Settings DMA Settings GPIO Settings

DMA Request Stream Direction Priority

USART2_TX DMA1 Stream 6 Memory To Peripheral

Add Delate
~DMA Request Settings
Peripheral Memary
Mode | MNormal ~ Increment Address
UseFifo [| Threshald Data Width Byte ~ Byte w
Burst Size

Figure 34: DMA configuration for USART2 TX

The USART2 DMA interrupt needs also to be enabled: USART2 > NVIC Settings.

| 37

Reset Configuration

-~
s

A A

-~ -~)\) -~ -~
(\/_, Parameter Settings (\)' User Constants () NVIC Settings 6/_1 DMA Settings (\/_, GPIO Settings

Sub Priority

NVIC Interrupt Table

DMA1 streamé global interrupt

Enabled Preemption Priority

USARTZ global interrupt

Figure 35: USART2 TX DMA interrupt configuration

The ISR also needs to be updated to call the UART_Transmit_DMA() instead of UART_Transmit_IT().

Function

Code

TIMG6 Interrupt routine

uint8 t

void HAL TIM PeriodElapsedCallback (TIM HandleTypeDef *htim) {

HAL ResumeTick();

HAL UART Transmit_ DMA (&¢huart2, textApp, sizeof (textApp)) ;

HAL:SuspendTick();

textApp[]="Test of Low Power Mode on STM32\r\n";

New consumption values

are stored in the table below.

Test Conditions

Microcontroller

Low Power Mode Average

consumption

Default Mode (CubeMX)
with HCLK = 84 MHz (HSI)
BaudRate = 230400
APB1 Peripheral Clock = 5.25
Transmit only
Clock-Gatingon-USART2

Unused pin as analog

USART Tx with interrupt

MHz Sleep On Exit
STM32F446 Normal Sleep Mode 5.64 mA

BaudRate = 230400
Transmit only

Unused pin as analog
USART Tx with DMA

Default Mode (CubeMX)
with HCLK = 84 MHz (HSI)

Clock-Gating-on-USART2

APB1 Peripheral Clock = 5.25 MHz STM32F446 Sleep On Exit 5.80 mA
Normal Sleep Mode

What do we see?

Table 19: Current consumption with IT or with DMA

The consumption is higher when using the DMA, so we don't really have a big advantage on power

consumption. It can come from several explanations:

1.

The power consumption with USART2 in interrupt is probably underestimated because the

peaks of current are too short to be taken into account.

of power consumption.

The DMA is a CPU peripheral, which needs to be powered and clocked. That induces a raise

| 38

We can see in the Figure 36 the step of current consumption of the DMA peripheral every 10 ms.
We can also notice that the CPU has a short running period at the beginning, the half and the end
of the transfer.

T B
B 5 3 5 @ B B B8 & @
8 & a a o &8 a a a o

Current (ph)

i

P ebearay o T A il Jrm

508 &8 &8 &8 &8 & &8 & &8 & & o8

Figure 36: USART2 TX with DMA (STM32F446)

3.14 Effect of the Code optimization

So far, with optimization level "None (-00)" we have to following results.

Memory Regions Memory Details

Region Start address End address Size Free Used Usage (%)
@ FLASH 0x08000000 0x08080000 512KB 493,89 KB 13,11 KB I 2.56%
& RAM 0x20000000 0x20020000 128 KB 126,2 KB 1.8 KB | 1.40%

Figure 37: Flash and RAM used with no optimization.

% Let's change the compiler optimization options on the STM32F446 and see if there are some
improvements on calculation and therefore current consumption.

Memory Regions Memory Details

Region Start address End address Size Free Used Usage (%)
= FLASH 0x08000000 Ox08080000 512 KB 503,92 KB 8,08 KB | 1.58%
&8 RAM 0x20000000 Ox20020000 128KB 126,2 KB 1.8 KB ‘ 1.40%

Figure 38: Flash and RAM used with optimization for speed

| 39

Memory Regions Memory Details

Region Start address End address Size Free Used Usage (%)
=5 FLASH 0x08000000 Ox08080000 512KB 504,49 KB 7.51 KB | 1.47%
&= RAM 0x20000000 0x20020000 128 KB 126,2 KB 1.8 KB | 1.40%

Figure 39: Flash and RAM used with optimization for size

| did not get any difference in power consumption for any optimization level. However, for some
type of application, it probably worth trying it.

| 40

4 How to enter the Sleep Mode - WFI / WFE instruction

So far, we have seen the SLEEPONEXIT feature which enters/exits automatically the Sleep mode
when an interrupt occurs. Now, we will see how we can launch the Sleep mode, and which events
wake up the MCU.

4.1 WFI instruction: Wait For Interrupt

4.1.1 Entering the low power mode

For entering the low power mode, we just need to use the wfi instruction: it enters Sleep mode
unconditionally, which means that any interrupt source will wake up the MCU. We can use the wfi
instruction in handler mode (during an ISR) or in thread mode (in any other functions).

4.1.2 Our new Application

For this application, we will reset all previous configurations to its default state, as it is when you
create a new project with STM32CubelDE

The PC13 push button (see Figure 40) will interrupt the CPU and launch an USART2 data transmission
(115200 Bauds) stating that the STM32 has been woken up. When the button is not pressed, the
MCU executes all the functions in the while loop, than goes back in Sleep mode.

VDD
PB14/PBI5 F R30
PBI5/PD8 - 4K 7
PC8 - N- e
PCY -
bep) [s2 pCi =—Cl5
pop2 3 PC12 Bl 100nF
pcl3 —2 PCI3 —~_ | USER (Blue)
3 PCl4 SBI7 i
PC14-0SC32 IN ——== R22
PC15 - 0SC32 OUT —m———— 100

Figure 40: The User Button applies a falling edge when pressed

During our experiment, we will print some messages on the USART to understand how the
application behaves. To make things easy, we will redirect the printf() function to the UART2.

& Write the following function between the "USER CODE BEGIN 0" and "USER CODE END 0"
tags in your main.c files:

/* USER CODE BEGIN 0 */
int ___io_putchar (int ch) {
HAL UART Transmit (&huart2, &ch, 1, 1000);

3
/* USER CODE END 0 */

< Add the #tinclude<stdio.h> in the beginning of your main.c

We need to enable the falling edge interrupt on PC13 in CubeMX: GPIO > NVIC (see Figure 41).

| 41

@ P10 () Single Mapped Signals (2) Ree (&) 5¥5 (&) usart (D) wvic

MVIC Interrupt Table

Enabled Preemption Priority Sub Priority

=

EXTI line[15: 10] interrupts ‘

Figure 41: Falling edge interruption configuration for PC13 Push Button

The application will run the following code:

Function Code

printf ("\r\n\r\nTest of Low Power Application on STM32\r\n");

while (1) {
main() printf ("Running the while loop\r\n");

printf ("The processor goes to Normal sleep using wfilr\n\r\n");
HAL SuspendTick () ;

HAL PWR EnterSLEEPMode (PWR_MAINREGULATOR ON, PWR SLEEPENTRY WFT) ;
}

void HAL GPIO EXTI Callback(uintl6 t GPIO Pin) {
HAL ResumeTick () ;

Push Button ISR pri;tf("Wake Up by Push Button IT\r\n");

}

We must remember that the SysTick timer is still running and its interruption wakes up the MCU. To
prevent that, we use the HAL_SuspendTick() function just before going in Sleep mode.

What do we see?

m The processor wakes up to execute its ISR than goes back to sleep.

m There is a step of current as long as the push button is pressed due to the R30 pull-up
resistor.

Current (i)

oy AT A ™
uJ A AL I - IAREAH Y

Figure 42: Sleep mode with wfi and wake up by Push Button interrupt (STM32446)
4.2 WFE instruction: Wait For Event

After this instruction, the CPU will enter the Sleep mode conditionally. When wfe is used, the
content of the event register is checked:

| 42

m If the event register is 1, it resets it to 0 and the processor keeps running.

m If the event register is 0, it goes to Sleep mode.

Software cannot read or write the event register.

4.2.1 Whatis an event?

In the case of an interrupt, when a peripheral raises its specific flag, the processor executes the

corresponding Interrupt routine.

In the case of an event, when a peripheral raises its specific flag, the processor can be aware that

the event has taken place (wake up for example) but it does not launch an interrupt routine.

Only a few peripheral has an event register, but all peripherals can generate events.

4.2.2 How to generate events in a STM32

In the block diagram of the Figure 43, we can see that there are two main streams, the interrupt (1),

and the events (2):

m The interrupts go to the NVIC.
m The events go to the cortex M.

| AMBA APB bus

PCLK2 _p\

Peripheral interface

<

=

(2) Events Event

mask
register

A A A A
23 23 23 23 23
Y A A
Pending Interrupt Software Rising Falling
request mask interrupt trigger trigger
register register event selection selection
register register register
A
To NVIC interrupt 23 23 23 23
controller
T 33 G:
<
(1) Interrupt
Pulse /—{L Edge detect
—] -
23 generator | 23 (\A 33 circuit

Input
] line

MS32662V1

Figure 43: Interrupt/Event controller block diagram

| 43

The 23 lines correspond to the 23 EXTI lines: 15 for the GPIO and 7 other peripherals (USB, RTC...).
These 23 EXTI lines can create either IT or Events and each of these 23 lines are coming from any
GPIO:

EXTIO[3:0] bits in the SYSCFG_EXTICR1 register

PAO0 OFH——
PB0 O
PCO O——»f
PDO0 ——» EXTIO
PE0 O—
PFO O—»f
PG0 O—>
PHO O—»

EXTI1[3:0] bits in the SYSCFG_EXTICR1 register

¢

PA1 O—>
PB1 O——>
PC1 O—»
PD1 O— EXTI
PE1 O—>
PF1 O——>
PG1 O—>
PH1 O——>

EXTI15[3:0] bits in the SYSCFG_EXTICR4 register

¢

PA15 O—»
PB15 C—»
PC1S O—> | exTits
PD15 —»
PE15 O—»
PF15 O—
PG15 O—

Figure 44: Mapping of the first 15 EXTI lines- Reference Manual STM32F446

The seven other EXTI lines are connected as follows:

o EXTl line 16 is connected to the PVD output

« EXTlline 17 is connected to the RTC Alarm event

e EXTlline 18 is connected to the USB OTG FS Wakeup event

o« EXTlline 20 is connected to the USB OTG HS (configured in FS) Wakeup event
« EXTlline 21 is connected to the RTC Tamper and TimeStamp events

¢ EXTl line 22 is connected to the RTC Wakeup event

Figure 45: Mapping of the next seven EXTI lines- Reference Manual STM32F446

In our application, we are using the Push Button connected to PC13, which is linked to the EXT13
line. EXT13 can create either an interrupt or an event, depending on the Interrupt Mask Register
(for the interrupt Line) or on the Event Mask Register (for the Event Line).

4.2.3 How to wake up the CPU when we use WFE

The reference manual explains three methods to wake up the CPU when wfe is used. We are going
to explore the three of them. One of this method uses the SEVONPEND bit (Send EVent ON PENDing
bit).

| 44

o [fthe WFE instruction was used to enter the low power mode, the MCU exits the mode

as soon as an event occurs. The wakeup event can by generated either by:

— NVIC IRQ interrupt
- When SEVEONPEND=0 in the Cortex®-M4 System Control register.
By enabling an interrupt in the peripheral control register and in the NVIC. When
the MCU resumes from WFE, the peripheral interrupt pending bit and the NVIC
peripheral IRQ channel pending bit (in the NVIC interrupt clear pending register)
have to be cleared.
Only NVIC interrupts with sufficient priority will wakeup and interrupt the MCU.
- When SEVEONPEND=1 in the Cortex®-M4 System Control register.
By enabling an interrupt in the peripheral control register and optionally in the
NVIC. When the MCU resumes from WFE, the peripheral interrupt pending bit and
(when enabled) the NVIC peripheral IRQ channel pending bit (in the NVIC
interrupt clear pending register) have to be cleared.
All NVIC interrupts will wakeup the MCU, even the disabled ones.
Only enabled NVIC interrupts with sufficient priority will wakeup and interrupt the
MCU.
- Event
Configuring a EXTI line in event mode. When the CPU resumes from WFE, it is
not necessary to clear the EXTI peripheral interrupt pending bit or the NVIC IRQ

channel pending bit as the pending bits corresponding to the event line is not set.
It may be necessary to clear the interrupt flag in the peripheral.

Figure 46: The three ways to wake up the CPU when wfe is used — Reference Manual STM32F446

4.2.4 Application: First Wake up possibility: On interrupts
This first wake up method refers to that part of the documentation (from Figure 46).

- When SEVEONPEND=0 in the Cortex®-M4 System Control register.

By enabling an interrupt in the peripheral control register and in the NVIC. When
the MCU resumes from WFE, the peripheral interrupt pending bit and the NVIC
peripheral IRQ channel pending bit (in the NVIC interrupt clear pending register)
have to be cleared.

This means that any interrupt wakes up the processor and the ISR is executed.

We keep the same application as before (see paragraph 4.1.2), but instead of entering the Low
Power mode with wfi, we use wfe. The interrupt of the Push Button PC13 was already configured,
so the application should work as before.

| 45

Function

Code

main()

printf ("\r\n\r\nTest of Low Power Application on STM32\r\n");

while (1) {

}

printf ("Running the while loop\r\n");

printf ("The processor goes to Normal sleep using wfelr\n\r\n");
HAL SuspendTick () ;

HAL PWR_EnterSLEEPMode (PWR MAINREGULATOR ON, PWR_ SLEEPENTRY WFE) ;

Push Button ISR

void HAL GPIO EXTI Callback(uintl6 t GPIO Pin) {

}

HAL ResumeTick () ;
printf ("Wake Up by Push Button IT\r\n");

What do we see?

This application is exactly the same as before.

4.2.5 Application: Second Wake up possibility: On EXTI Events

We will see here the second possibility to wake up from low Power mode using wfe. It refers to that
part of the documentation (from Figure 46).

- Event

Configuring a EXTI line in event mode. When the CPU resumes from WFE, it is
not necessary to clear the EXTI peripheral interrupt pending bit or the NVIC IRQ
channel pending bit as the pending bits corresponding to the event line is not set.
It may be necessary to clear the interrupt flag in the peripheral.

As we have seen, EXTl is a processor module that has the ability to send events. We will use the Push
Button PC13 to create the event. For that, we need to configure the PC13 pin as an "External Event
Mode with Falling edge trigger detection" in CubeMX.

PC13 Configuration :

GPIO mode

GPIC Pull-up/Pull-down

User Label

External Event Mode with Falling edge trigger detection N e
53

Mo pull-up and no pull-down w

B1 [Blue PushButton]

Figure 47: The PC13 pin configuration for generating Event on falling edge

The processor wakes up with the Push Button but no ISR is launched: The PC13 is no longer an
interrupt source: it is an event source.

| 46

Function Code

printf ("\r\n\r\nTest of Low Power Application on STM32\r\n");

while (1) {

printf ("Running the while loop\r\n");

printf ("The processor goes to Normal sleep using wfelr\n\r\n");
main() HAL SuspendTick () ;
HAL_PWR_EnterSLEEPMode (PWR MAINREGULATOR ON, PWR SLEEPENTRY WFE) ;
HAL ResumeTick();
printf("Wake-up by Push Button EXTI event\r\n");

What do we see?

This application no longer executes an interrupt function. It just carries on its execution after the
instruction wfe where the MCU has been sent to Sleep Mode.

4.2.6 Application 3: Third Wake up possibility. On pending interrupts
We will see here the third possibility to wake up from low Power mode using wfe. It refers to that
part of the documentation (from Figure 46).

- When SEVEONPEND=1 in the Cortex®-M4 System Control register.

By enabling an interrupt in the peripheral control register and optionally in the
NVIC. When the MCU resumes from WFE, the peripheral interrupt pending bit and
(when enabled) the NVIC peripheral IRQ channel pending bit (in the NVIC
interrupt clear pending register) have to be cleared.

All NVIC interrupts will wakeup the MCU, even the disabled ones.

Only enabled NVIC interrupts with sufficient priority will wakeup and interrupt the
MCU.

First, we need to explain properly how interrupt work in a Cortex M processor: The interrupts are
controlled by the NVIC. This NVIC controller accepts (if the IT source is unmasked), or not (if the IT
source is masked) the interruption. When an IT occurs, a flag is raised. We call this situation a
pending IT. If the NVIC accepts it, the Cortex M will be interrupted, and the flag need to be reset.

To enable an interrupt, we have to:

1. Configure the Peripheral to generate the IRQ [ie: __HAL_UART_ENABLE_IT(huart,
UART_IT_TXE) for generating IT at the end of an USART transmission]

2. Configure the NVIC to accept (unmask) the IT of a specific peripheral [ie:
HAL_NVIC_EnablelRQ(USART2_IRQn) for unmasking the USART2 interrupt]

| 47

Clock Security

IRQ
System
Peripherals :Eg

IRQ

EXTI Controller IRQNVIC : , Cortex M

ortex
Systick Timer IRQ IRQ

Figure 48 Generation of IRQ in ARM cortex M

What do we want to do?

We want the peripheral to send an event to the MCU. But the peripheral cannot create events by
itself. The documentation explains us that we can make it happen by using a special bit called
SEVONPEND (Send EVent ON PENDing)

1. The SEVONPEND bit must be set: The following HAL function set the SEVONPEND bit.

HAL PWR EnableSEVOnPend ()

2. There must be an IT pending bit: PC13 must be able to generate IT.

PC13 Configuration :

GPIO mode External Interrupt Mode with Falling edge trigger detection ~
GPIO Pull-up/Pul-down No pull-up and no pull-down w
User Label B1 [Blue PushButton]

Figure 49: PC13 GPIO mode configuration for generating IT.

3. The corresponding IT shall be disabled in the NVIC, so that IT will be pending but no interrupt
will be triggered.

(@) eP0 () single Mappedsignals (V) RCC (V) sYs (&) USART) nvic

MNVIC Interrupt Table Enabled Preemption Priority Sub Priority

EXTI line[15: 10] interrupts | O ‘

Figure 50: The IT generated by PC13 is unmasked in the NVIC.

| 48

4. The documentation also says that when the MCU wakes up, "the peripheral interrupt
pending bit and the NVIC peripheral IRQ pendant bit have to be cleared".

m Clear the peripheral IT flag: __HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_13)
m Clear the NVIC IT pending flag: HAL_NVIC_ClearPendingIRQ(EXTI15_10_IRQn)

The code of our application is as follow:

Function Code

main()

HAL PWR EnableSEVOnPend () ;
printf ("\r\n\r\nTest of Low Power Application on STM32\r\n");

While (1) {
printf ("Running the while loop\r\n");
printf ("The processor goes to Normal sleep using wfelr\n\r\n");
HAL_SuspendTick();
___HAL GPIO EXTI CLEAR IT (GPIO PIN 13);
HAL NVIC ClearPendingIRQ (EXTI15 10 IRQn);
HAL_PWR_EnterSLEEPMode (PWR MAINREGULATOR ON, PWR SLEEPENTRY WFE) ;
HAL ResumeTick () ;
printf ("Wake up by Push Button pending IT");
}

Note: __HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_13) and HAL_NVIC_ClearPendinglRQ
(EXTI15_10_IRQn) have to be placed just before the HAL_PWR_EnterSLEEPMode. Otherwise, if the
MCU goes to sleep with one of these two flags already ON, it will not wake up.

4.3 When to use WFI or WFE?

Most of the time we can use wfi. When we use wfe we don't launch an ISR, so there is no context
switching (stacking / unstacking). Therefore, it is easier to implement and faster to respond.

We want to show by an application the difference between the wfi (interrupt) and the wfe (event)
instructions on the speed point of view. A push button is going to wake up the processor and we
measure the time between the Push Button signal (falling edge) and the action realized by the
processor when it wakes up. In our case, it would be a simple led turning on PAS. For that purpose,
we use a logic analyser or an oscilloscope.

Consumption values and wake up time are stored in the table below.

Test Conditions MCU Low Power Mode Wake up time
Default Mode (CubeMX) Normal
with HCLK = 84 MHz (HSI) STM32Fa4e Sleep Mode with wfi 18us
Default Mode (CubeMX) Normal
with HCLK = 84 MHz (Hsl) | >TM32F446 | ¢\ oen Mode with we 780 ns

Table 20: Wake up time depending on the way we entered the Sleep mode

In this application, we are still using the Sleep mode. Here is the power consumption during sleep
time:

| 49

Test Conditions

Low Power Mode

Current consumption
during Low Power

Default Mode (CubeMX)
with HCLK = 84 MHz (HSI)

Normal sleep mode

5.85 mA

| 50

5 The power domains

STM32 have separated power supplies, which have different purposes. The segmentation of the
power scheme is useful for controlling the MCU consumption. In this chapter, we will have a look
on the power domains of the MCU.

5.1 Power supply overview

VDDA : Analog Domain
VDDA ADC/ DAC

Temp Sensor
VSSA

VDD Domain (3.3V)

Flash Memory

vbD [} I/0
VSS 1 Standby circuitry

Wake up Logic

Vcore Domain (1,2V)

Voltage Regulators Core

RAM Memory
Digital peripherals

1,2V

Backup Domain

Low Voltage detector

RTC
Backup SRAM
Backup Register
LSE Crystal 32K

TTl

vBat [

Figure 51: Simplified Power supply overview of the STM32F446

5.2 The regulators

For delivering the Vcore voltage (1.2V), two regulators can be used.

m The Main Regulator (MR)
m The Low Power Regulator (LPR)

Using the LPR, obviously reduces the consumption but it also increases the wake up time. LPR is not
always available.

Running mode: Only Main Regulator is available.

Normal Sleep mode: Only Main Regulator is available.

Stop mode: Main Regulator OR Low Power Regulator available.
Stanby mode: No regulator available.

5.3 The regulators modes
What is a bit complex is that each regulator (MR and LPR) can use five different configurations. All
configuration are only available as specified on the Figure 52.

| 51

Voltage regulator

configuration Run mode Sleep mode Stop mode Standby mode

Normal mode MR (1) MR (1) MR or LPR (2) -
Low-voltage mode - - MR or LPR -
Over-drive mode(?) MR (1) MR (1) - -

Under-drive mode

MR or LPR (2)

Power-down mode

Yes (3)

Figure 52: Voltage regulator mode versus operating mode

5.3.1 Case (1) - Figure 52

We are going to explain the case (1) on the Figure 52. When the processor is running (Run mode) or
in Sleep mode, the MR is the only regulator available. The MR regulators provide full power to the
1.2V domain. The exact value of the 1.2V can be scaled (level 1, 2 or 3) in order to adjust the power
delivered and reach the maximum frequency. The "over drive mode" is made for overclocking the

MCU up to 180 MHz, but obviously consumes more current.

Power Scale 3 ((VOS[1:0] bits in
PWR_CR register = 0x01), 120 MHz
HCLK max frequency

1.08

1.14

1.20

Power Scale 2 ((VOS[1:0] bits in

PWR_CR register = 0x10), 144 MHz
HCLK max frequency with over-drive
OFF or 168 MHz with over-drive ON

1.20

1.26

1.32

Power Scale 1 ((VOS[1:0] bits in

PWR_CR register = 0x11), 168 MHz
HCLK max frequency with over-drive
OFF or 180 MHz with over-drive ON

1.26

1.32

1.40

Figure 53: Voltage level for the Main Regulator

The Figure 54 shows the HCLK maximum frequency:

Scale 3 for HCLK < 120 MHz
Scale 2 for 120 MHz < HCLK <144 MHz (normal mode) / 168 MHz (over-drive mode)
Scale 1 for 144 MHz < HCLK < 168 MHz (normal mode) / 180 MHz (over-drive mode)

| 52

Symbol Parameter Conditions(?) Min | Typ | Max | Unit
Power Scale 3 (VOS[1:0] bits in
PWR_CR register = 0x01), 0 - 120
Regulator ON, over-drive OFF
Over-
drive - 144
Power Scale 2 (VOS[1:0] bits | oFF
in PWR_CR register = 0x10), 0
Regulator ON Over-
fucLk | Internal AHB clock frequency drive - 168
ON
Over-
drive - | 1es |MHZ
Power Scale 1 (VOS[1:0] bits | oFF
in PWR_CR register= 0x11), 0
Regulator ON Over-
drive - 180
ON

Figure 54: HCLK frequency possible with the power scale 1, 2 or 3

In CubeMX, everything is properly configured as soon as you change the frequency of HCLK. You can
check the scale number and the overdrive mode in CubeMX > System Core > RCC > Parameters
Settings > Power Parameters.

% Try to change the frequency of HCLK and verify that the value generated for the scale
number and overdrive mode are correct.

5.3.2 Case (2) - Figure 52

When the MCU is in Stop mode, we have the choice between the MR and LPR. The latter will
obviously reduce the power consumption but the wake up time will increase. If we use the
regulators in underdrive mode, their leakage current will be reduce but the Flash Memory is not
powered anymore. Once again, the wake-up time will increase.

5.3.3 The regulators (MR or LPR) in "power down mode"
The power down mode is automatically activated when the CPU is in Standby Mode: SRAM, RTC,
Registers are not powered anymore.

| 53

6 Exploring the Stop Mode

6.1 Entering the Stop Mode

6.1.1 Choosing the regulator and its configuration

As we have seen in the previous chapter, in Stop mode, we can choose between LPR (Low Power
Regulator) instead of the MR (Main Regulator). The benefits will be a lower power consumption, but
there will be a higher wake up time. As we can see in Figure 55, the PPDS bit can select the right
regulator in Stop mode.

DeepSleep Bit =1

Deep Sleep
PDDS bit =0 PDDS bit=1
Stop Mode Standby Mode
LPDS hit=0 LPDS bit=1
Stop Mode Stop Mode
Main Regulator Low Power Regu|at0r

Figure 55: The two Stop modes in a STM32F446

How do we enter Stop mode?

m Select the Deep Sleep mode (Cortex ARM specific)
Set PDDS bit = 0. (STM32 specific)
Select the regulator we want to use: PWR_MAINREGULATOR_ON if we want the MR ON, or
LWR_LOWPOWERREGULATOR_ON if we want the LPR ON.

To enable the underdrive in Low power stop mode, we use the Power Control Register:

m bit UDEN, in order to activate the under drive mode capability

Then we select the regulator concerned by the underdrive mode:

m bit MRUDS for the under drive on the MR
m bit LPUDS for the under drive on the LPR

| 54

Everything is done by the HAL function HAL_PWR_EnterSTOPMode() for the Normal mode or
HAL_PWREx_EnterUnderDriveSTOPMode() for underdrive mode.

LPDS bit=0

PDDS bit=0

Stop Mode

Stop Mode
Main Regulator

LPDS bjt =1

Stop Mode
Low Power Regulator

Main Regulator
Normal Mode

Main Regulator
Under-Drive Mode

Low Power Regulator
Normal Mode

Low Power Regulator
Under-Drive Mode

6.1.2 Flash memory: ON or OFF
When using the underdrive mode, we saw that the Flash memory is always off. However, if we

choose the normal mode for MR or LPR, then we can choose whether we want the Flash memory

Figure 56: Underdrive mode for the MR and the LPR

ON or OFF.
PDDS bit=0
Stop Mode
LPDS bit=0 LPDS bit=1
Stop Mode Stop Mode
Main Regulator LPR Regulator
Normal Mode Normal Mode
FPDS bit =0 FPDS bit = 1 FPDS bit=0 FPDS bjt=1
Flash is ON Flash is OFF Flash is ON Flash is OFF

Flash is always OFF when using the Underdrive Mode

Figure 57: Selection of the flash memory ON or OFF during STOP mode.

| 55

6.2 Test of the Stop Modes

When exiting the Stop mode, the STM32 use the HSI RC oscillator with its default configuration.
Therefore, we have to reconfigure the clock system each time we exit the Stop mode. In our
application, if we don't do it, the USART will not work.

We are going to use the application from the chapter 4.1.2: The push button generates an interrupt
that wakes up the MCU. For each test, we will change the configuration (MR, LPR, underdrive, Flash
memory) and measure the power consumption and the wake up time. We will test the six following
configurations:

1. MR in Normal Mode + Flash ON

Function Code

printf ("\r\n\r\nTest of Low Power Application on STM32\r\n");

While (1) {
main() printf ("Running the while loop\r\n");
printf ("The processor goes to Normal sleep using wfilr\n\r\n");
HAL_PWR_EnterSTOPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY WFTI);
}

void HAL GPIO EXTI Callback(uintl6 t GPIO_Pin) {
SystemClock_Config();
printf ("Wake Up by Push Button IT\r\n");

}

Push Button ISR

2. MR in Normal Mode + Flash OFF

HAL PWREx EnableFlashPowerDown () ;
HAL_PWR_EnterSTOPMode(PWR_MAINREGULATOR_ON, PWR_STOPENTRY_WFI);

3. LPR ONin Normal Mode + Flash ON

HAL PWR EnterSTOPMode (PWR LOWPOWERREGULATOR ON, PWR STOPENTRY WEFT);

4. LPRON in Normal Mode + Flash OFF

HAL PWREx EnableFlashPowerDown () ;
HAL_PWR_EnterSTOPMOde(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);

5. MR in Under Drive Mode (Flash is always OFF)

HAL PWREx EnableFlashPowerDown () ;
HAL_PWREX_EnterUnderDriveSTOPMode(PWR_MAINREGULATOR_UNDERDRIVE_ON,
PWR_STOPENTRY WFT)

6. LPRin Under Drive Mode (Flash is always OFF)

HAL PWREx EnableFlashPowerDown () ;
HAL_PWREX_EnterUnderDriveSTOPMode(PWR_LOWPOWERREGULATOR_UNDERDRIVE_ON,
PWR_STOPENTRY_WFI)

Consumption values and wake up time are stored in the chart and table below.

| 56

Wake up time (us)

A

Current consumption (mA)

A

0
o) o o)
§e] 3 > —_ °
= 2 = : 2 E
© © © S
£ £ £ o £ v
fe el fe-
o o o E 2 E
P Z 0O 2 0 Z =
S O O o 3 O c ° 3
=8 «% 8 <5 £38 g5
= ST 5T S =2 5T 52
Figure 58: Current consumption and wake up time in different STOP low power mode

Test Conditions Low Power Mode Current consumption Wake up time
vl\?ii;a:thlfidsell(lsllu:ze m)sfl)) Ef:sr? grilNormal Mode) 761 pA 21.2 us
i HCLK = 84 e (11) | Fash OFF 732 48 129y
Vai;a:lctl_l\lzlidse“(fnu:zem)s(l)) I:al;f)gl\(lNormal Mode) 676 1A 232 s
Vai;a:lctl_l\lzlidse“(fnu:zem)s(l)) EfaZS(NJI:(;Jnder Drive Mode) 678 A 1198 s
it HLK — 54 Mg (151 | Fash OFF 647 2200
Default Mode (CubeMX) LPR ON (Under Drive Mode) 573 uA 122.7 s

with HCLK = 84 MHz (HSI)

Flash OFF

Table 21: Current consumption and wake up time in stop mode with the STM32F446 MCU

| 57

You can get useful information with the Table 22 for the configuration of the STOP mode.

UDEN[1:0] | MRUDS | LPUDS | LPDS | FPDS

bits bit bit bit bit Wakeup latency

Voltage Regulator Mode

STOP MR

(Main Regulator) - 0 - 0 0 HSI RC startup time

HSI RC startup time +

STOP MR- FPD - 0 - 0 1 Flash wakeup time from power-
down mode

Normal HSI RC startup time +
mode STOP LP - 0 0 1 0 regulator wakeup time from LP
mode

HSI RC startup time +
Flash wakeup time from power-
STOP LP-FFD - - 0 1 1 down mode +
regulator wakeup time from LP

mode

HSI RC startup time +
Flash wakeup time from power-
STOP UMR- down mode +

FPD Main regulator wakeup time from
under-drive mode + Core logic to
Under- nominal mode

drive
Mode HSI RC startup time +
Flash wakeup time from power-
down mode +
regulator wakeup time from LP
under-drive mode + Core logic to
nominal mode

STOP ULP-FPD 3 - 1 1 -

Table 22: Configuration of the STOP low power mode — Reference Manual STM32F446

= We can also compare the result with the Table 23 values from the Reference Manual
(STM32F446).

| 58

Max

Typ
Symbol Parameter Conditions Vop=36V Unit
TA = TA = TA = TA =
25°C | 25°c" | 85°C | 105°c()
Flash memory in Stop mode, all
Supply current in oscillators OFF, no independent | 0.234 12 10 16
Stop mode with watchdog
voltage regulator in | Flagsh memory in Deep power
main regulator mode | 4own mode, all oscillators OFF, | 0.205 1 95 15
IDDfSTOFLNM no independent watchdog
(normal
mode) . Flash memory in Stop mode, all
Supply currentin oscillators OFF, no independent | 0.15 0.95 8.5 14
Stop mode with watchdog
voltage regulator in -
Low Power regulator | Flash memory in Deep power
mode down mode, all oscillators OFF, | 0.121 0.9 6 12
no independent watchdog mA
gtlé T}px:;;r\?u?tihm Flash memory in Deep power
voltage regulator in down que, main regulat_or In 0.119 0.4 3 5
main requlator and under-drive mode, all oscillators
under—dgrlive mode OFF, no independent watchdog
Ipp_sToP_uD
m(under- | sypply current in)
drive mode) Stoipnsflode with Flash memory in Deep power
voltage regulator in down mode, Low Power
Low g’owe% requlator regulator in under-drive mode, 0.055 0.35 3 5
and under—dri\?e all oscillators OFF, no
mode independent watchdog

Table 23: Typical and maximum current consumption in STOP modes

| 59

7 Exploring the Standby Mode

This Low power mode puts the MCU in Deep Sleep mode with the lowest power consumption
possibly achieved. The MCU will switch off all clocks, Flash memory, regulators, SRAM memory and
registers. All values are lost, except the ones stored in the register backup domain, and the backup
SRAM.

7.1 The Standby mode

7.1.1 New application
For this chapter, our application will enter the standby mode if the user push button is pressed
(PC13) and will be woken up on a rising edge on the GPIO PAO.

7.1.2 : Entering and exiting the standby mode
Two PINs can wake up the MCU: WKUP1 or WKUP2. Before entering the Standby mode, we need to
enable them. A rising edge on the Wake up pin of the MCU wakes it up from Standby mode.

m The first wake up pin is PAO (WKUPO in the datasheet, called WKUP1 in the Reference
Manual)

m The second wake up pin is PC13 (WKUP1 in the datasheet, called WKUP2 in the Reference
Manual)

While programming, we need to keep the designation of the Reference Manual. The register
PWR_CSR -> EWUP1 programs the Wake up pin WKUP1 (PAO) and PWR->EWUP2 programs the
wake up pin WKUP2 (PC13). We can use the HAL function HAL_PWR_EnableWakeUpPin().

When a rising edge is applied on the Wake up pin, the flag PWR_CSR -> WUF (Wake Up Flag) is set
and it wakes up the MCU. This Flag has to be cleared by software using the HAL macro
__HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU), otherwise, the CPU will wake up continuously.

Here is the code of our new application.

Function Code

printf ("\r\n\r\nTest of Low Power Application on STM32\r\n");
HAL_PWR_EnableWakeUpPin(PWR_WAKEUP_PINl);

while (1)1
printf ("Waiting for the Push Button PC13...\r\n");
main() while (HAL_GPIO_ReadPin (GPIOC, GPIO_PIN_13) ==SET) ;

printf ("The user pressed the PC13 Push Button\r\n");
printf ("The processor goes to Standby mode\r\n\r\n");
__HAL PWR_CLEAR FLAG (PWR FLAG WU) ;
HAL_PWR_EnterSTANDBYMode () ;

}

The wake up pin resets the MCU, so we never go beyond the HAL PWR_EnterSTANDBYMode()
function.

| 60

Test Conditions Low Power Mode Current consumption
Default Mode (CubeMX)
with HCLK = 84 MHz (HSI) Sleep mode 5,50 mA
BaudRate = 115200
Default Mode (CubeMX)
with HCLK = 84 MHz (HSI) Stop mode 732 pA
BaudRate = 115200
Default Mode (CubeMX)
with HCLK = 84 MHz (HSI) Standby mode 3 pA
BaudRate = 115200
Table 24: Current consumption of the STM32F446 depending the Low Power mode

7.1.3 Knowing the previous state of the MCU

In our application, we don't know if we have previously been in Standby mode or if the application
is running for the first time. If the MCU is waking up from Standby mode, you might not want to
execute the same instructions. The Stand By Flag (SBF) of the Power Control Register is set as soon
as the processor is going to Standby mode, so we can check it at the beginning of our application.

m The HAL macro __HAL_PWR_GET_FLAG(PWR_FLAG_SB) checks the flag SB flag value.
m The HAL macro __HAL_PWR_CLEAR_FLAG(PWR_FLAG_SB) resets the SB flag.

We are going to improve the previous application to check if the processor was previously in Standby
mode.

Function Code

printf ("\r\n\r\nTest of Low Power Application on STM32\r\n");
HAL PWR EnableWakeUpPin (PWR WAKEUP PINI);

if (__HAL PWR_GET_FLAG (PWR FLAG SB) == 1) {
printf ("The MCU was in Standby model\r\n");
__HAL PWR _CLEAR FLAG (PWR FLAG SB);

}

main() while (1) {
printf ("Waiting for the Push Button PC13...\r\n");
while (HAL GPIO ReadPin (GPIOC, GPIO PIN 13)==SET);
printf ("The user pressed the PC13 Push Button\r\n");
printf ("The processor goes to Standby mode\r\n\r\n");
__HAL PWR_CLEAR FLAG (PWR FLAG WU) ;
HAL_PWR_EnterSTANDBYMode ()
}

What do we see?

m If we put the STM32 in Standby mode with the user push button PC13, a rising edge on PAQ,
or a reset (black push button) will reset the MCU. The application will state that the MCU
was in standby mode.

m If wedon't put the STM32 in Standby mode, a rising edge an PAO has no effect. A reset (black
push button) will restart the application.

7.1.4 Differencing the system Reset and the Wake up pin Reset
In our previous application, when the STM32 goes to Standby mode, we cannot make the difference
between System Reset (the application runs for the first time) and a wake up from the WKUP pin

| 61

(the application wakes up). If we want this information, we need to verify the Wake Up Flag (WUF)
of the Power Control Register.

We update our application with the following code:

Function Code
printf ("\r\n\r\nTest of Low Power Application on STM32\r\n");
HAL_PWR_EnableWakeUpPin(PWR_WAKEUP_PINl);
if (__HAL PWR GET FLAG (PWR_FLAG_SB) == 1) {
printf ("The MCU was in Standby model\r\n");
__HAL PWR_CLEAR FLAG (PWR FLAG SB);
}
if (_ HAL PWR GET FLAG (PWR_FLAG WU) == 1) {
printf ("The user pressed the WKUP PIN\r\n");
}
main() else{

printf ("The user pressed the RESET PIN\r\n");
}

while (1) {
printf ("Waiting for the Push Button PC13...\r\n");
while (HAL GPIO ReadPin (GPIOC, GPIO_PIN 13)==SET);
printf ("The user pressed the PC13 Push Button\r\n");
printf ("The processor goes to Standby model\r\n\r\n");
__HAL PWR_CLEAR FLAG (PWR FLAG WU) ;
HAL PWR_EnterSTANDBYMode () ;
}

7.2 The backup domain

The backup domain is the only part powered via Vgar pin during standby mode. It includes:

7.2.1

4 Ko of backup SRAM
20 backup registers
The Real Time Clock (RTC)

The backup SRAM

In our application, when we reset the processor, we lose all data stored in RAM memory. However,
in many applications we need to keep the value of variables.

The backup SRAM is an EEPROM-like memory area. It can be used to store data that need to be
retained while the processor is in Standby mode. The backup SRAM is disabled by default but it can
be enabled by software. If we want to keep the data during Standby mode, we need a power source
on Vgar. We can check on the Nucleo user guide that the Vesar pin is connected to the VDD power

supply.

| 62

UsB

PFO/PDO/PHO - OSC_IN NRST
PFI/PDI/PHI - OSC_OUT BOOTO

—_ |$\|U|

VDD —, ¢ VBAT/VLCD VSSA =
o —cht) 3 . .

I =— VDDA/VREF+ PD2/PBI1

— i— VDD VSS/VCAPL

- T VDD Vss

5 VDD/VUSB/VSA/PF7VSS/VCAP2/PF6 =

—— VDD/PF5 VSS/PF4/PA3 +

MCU LQFP64

Figure 59: VBAT connected to VDD on the Nucleo board

The SRAM backup domain peripheral is "write protected" by default. The following example gives
the procedure to enable the access to the backup SRAM.(Reference Manual):

e Access to the backup SRAM

1. Enable the power interface clock by setting the PWREN bits in the RCC_APB1ENR
register (see Section 6.3.13).

2. Set the DBP bit in the PWR power control register (PWR_CR) to enable access to the
backup domain

3. Enable the backup SRAM clock by setting BKPSRAMEN bit in the RCC AHB1
peripheral clock enable register (RCC_AHB1ENR).

Figure 60: How to enable the backup SRAM — Reference Manual STM32F446

1. _ HAL_RCC_PWR_CLK_ENABLE(); // Enable power interface clock
2. HAL_PWR_EnableBkUpAccess(); // Enable Access to backup domain
3. _ HAL_RCC_BKPSRAM_CLK_ENABLE(); // Enable backup SRAM clock

The base address of the backup SRAM is given in the datasheet and defined in the include file:
Drivers > CMSIS >Device > ST > STM32F4xx > Include > stm32f446xx.h with the name BKPSRAM.
That is where we are going to write data.

uint32 t* pBackupVariable = (uint32 t*) BKPSRAM BASE;

Now that we have located the backup SRAM, we need to keep the value while being in Standby
mode. Therefore, we need to activate the backup voltage regulator: HAL_PWREx_EnableBkUpReg()

We use the following code:

| 63

Function

Code

Global variables

uint32 t* pBackupVariable = (uint32 t*) BKPSRAM BASE;
uint32 t randomVariable;

main()

// Enable Backup SRAM Access
__HAL RCC_PWR CLK ENABLE () ;

HAL PWR EnableBkUpAccess () ;
__HAL RCC_BKPSRAM CLK_ENABLE () ;

// Enable BackUp SRAM regulator
HAL PWREx EnableBkUpReg () ;

printf ("\r\n\r\nTest of Low Power Application on STM32\r\n");
HAL PWR EnableWakeUpPin (PWR WAKEUP PINI);

if (__HAL PWR GET FLAG (PWR FLAG SB) == 1) {
printf ("The MCU was in Standby mode\r\n");
__HAL PWR_CLEAR_FLAG (PWR FLAG SB);
}

if (__HAL PWR GET FLAG (PWR_FLAG WU) == 1) {
printf ("The user pressed the WKUP PIN\r\n");
}

else(
printf ("The user pressed the RESET PIN\r\n");

}

printf ("randomVariable : $X\n\r",randomVariable) ;
printf ("backupVariable : $X\n\r", *pBackupVariable) ;

while (1)

{

printf ("Waiting for the Push Button PC13...\r\n");
while (HAL GPIO ReadPin (GPIOC, GPIO PIN 13)==SET);
printf ("The user pressed the PC13 Push Button\r\n");
printf ("Setting randomVariable to OxAAAAAAAA\Tr\n");
printf ("Setting pBackupVariable to OxBBBBBBBB\r\n");
randomVariable= 0xAAAAAAAA;

*pBackupVariable = OxBBBBBBBB;

printf ("The processor goes to Standby mode\r\n\r\n");
__HAL PWR _CLEAR FLAG (PWR FLAG WU) ;

HAL PWR_EnterSTANDBYMode () ;

}

What can we see?

m The backupVariable value is still the same after Standby mode.
m The randomVariable has been reset after Standby mode.

If you remove the HAL_PWREx_EnableBkUpReg() function from the application, both variables will
be reset after Standby mode.

| 64

8 The RTC

8.1 General overview
A RTC gives the time and date in real time. In low power embedded system, the RTC peripheral can
keep running even in the lowest low power mode.

8.1.1 The four modules of the RTC

The Real Time Clock (RTC) embedded in STM32 microcontroller acts as an independent BCD timer,
as long as the operating voltage remains ON. It does not stop in low power mode or during Reset.
The calendar can gives information on: years, months, days, hours, minutes, seconds and sub-
seconds.

m Two alarms can interrupt the MCU on a date.
m Wake up IT and event can occur

RTC Calendar RTC Alarm

RTC Tamper Detection RTC Wake up

Figure 61: The four RTC Module

8.1.2 The RTC Date and Time Register
m The RTC_DR (RTC Date Register) stores the Date
m The RTC_TR (RTC Time Register) stores the Time

12h or 24h format

AM
PM

\ v h 4

RTC_DR RTC_TR RTC_SSR

MS19524V3

Figure 62: The RTC calendar field — Application Note 4754

| 65

8.1.3 The clock source
There are three different clock sources available for the RTC. We can see them on the Figure 63:

m LSE (32768 kHz)
m HSE_RTC

m LS|

The RTC clock frequency has to be 1 Hz. Therefore, we use two PREDIV (A and S) to generate the

37 kHz

HSE OSC HSE
1-24 MHz

2, 4,

8,16

HSE_RTC
LSEOSC | LSE ToRTC
32.768 kHz RTCCLK d
RTCSEL[1:0]
LSIRC LSl

MSv19525V2

Figure 63: The RTC Clock Source — Application Note 4754

proper rate on ck_spre as we can see in the Figure 65 and Figure 64.

RTC
Clock

Asynchronous
prescaler
PREDIV_A

Asynchronous 7-bit
prescaler (default = 128)

Synchronous
prescaler
PREDIV_S

Ck_Spre

Calendar unit

Synchronous 15-bit
prescaler (default=256)

Shadow registers
(RTC_TR and
RTC_DR)

MS19527V2

The formula to calculate ck_spre is:

ck_spre =

RTCCLK

(PREDIV A+ 1)x (PREDIV S+ 1)

Figure 64 : Formula to calculate the clock - Application Note 4759

| 66

RTCCLK Prescalers
ck_spre
Clock source PREDIV_A[6:0] PREDIV_S[14:0]
124 7999
HSE_RTC =1 MH B
SE_ z (div 125) (div 8000) ‘
LSE = 32.768 kHz .127 -255 1Hz
(div 128) (div 256)
127 249
LSI = 32 kHz (div 128) (div 250) '
124 295
LSI = 37 kHz (div 125) (div 296) '
B 127 311
LSI =40 kHz (div 128) (div 312) e

Figure 65: PREDIV A and S values for different clock sources

8.2 Using the RTC

8.2.1 Reading the Date and Time
We want to create an application, which reads the time and date continuously from the RTC.

1. Enable the RTC peripheral in STM32CubeMX

RTC Mode and Configuration

i [Activate Clock Source

""" [Activate Calendar

2. Chose the Clock source for the RTC: We will chose the external 32.768 kHz crystal on the
Nucleo board.

RTC Clock Mux

HSE HSE_RTC [™_
—» /2 ~—» O
Input i
nput frequency LsE
LSE @ 32 768 To RTC (KHz)
e |
KHz Lsl
LSIRC > O/

3. Tune the Prescaler in order to have 1Hz on ck_spre.

= General
Hour Format Hourformat 24
Asynchronous Predivider value 127
Synchronous Predivider value 255

32768

- —1H
(127 + 1) = (255 + 1) z

ck_spre

| 67

We use the following code for our application:

Function Code
Global RTC_TimeTypeDef myTime;
variables RTC_DateTypeDef myDate;
printf ("\r\n\r\nTest of STM32 RTC\r\n");
while (1) {
HAL RTC_GetTime (¢hrtc, &myTime, RTC FORMAT BIN) ;
main() HAL RTC_GetDate (&¢hrtc, &myDate, RTC FORMAT BIN) ;

printf ("Time : %d:%d:%d\r\n",myTime.Hours,myTime.Minutes, myTime.Seconds) ;
printf ("Date : %d/%d/%d\r\n\r\n",myDate.Date,myDate.Month,myDate.Year) ;
HAL Delay(1000);

}

What can we see?

If we reset the CPU, the RTC keeps its value. However, if we remove the power, the time and date
will be lost. We will have the same behaviour with the Standby low power mode.

8.2.2 The Wake Up unit

The wake up unit is a down counting timer which can generate an interrupt and wake up the STM32
even in the Standby mode.

Our application:

We will create an application, which goes to Standby mode and wakes up every 10 seconds.

1. Enable and configure the wake up timer in STM32CubeMx.

“Wakelp Internal WakeUp w

() Parameter settings (%) User Constants (%) NVIC Settings

Configure the below parameters :

Q| search (Crtl... 9
I~ General

Hour Format Hourformat 24

Asynchronous Predivider value 127

Synchronous Predivider value 255

Calendar Time
Calendar Date

= Wake UP
Wake Up Clock iHz
Wake Up Counter 9

2. Unmask interruption of the wake up timer:

@ Parameter Settings @ User Constants @ NVIC Settings

MVIC Interrupt Table Enabled Preemption Priority Sub Priority

RTC wake-up interrupt through EXTI line 22 ‘ ‘

3. Generate the code

4. In the MX_RTC_Init() function, remove the HAL_RTC_SetTime() and HAL_RTC_SetDate()
function to prevent the MCU to erase the actual date and time when the microcontroller
restarts.

| 68

We use the following code for our application:

Function Code
Global RTC_TimeTypeDef myTime;
variables RTC_DateTypeDef myDate;

printf ("\r\n\r\nTest of Low Power Application on STM32\r\n");

if (__HAL_PWR_GET_FLAG (PWR FLAG WU) == 1) {

printf ("The Wake up Timer Restarted the MCU\r\n");

}
while (1) {

main() HAL RTC_GetTime (¢hrtc, &myTime, RTC_FORMAT BIN) ;

HAL RTC_GetDate (&¢hrtc, &myDate, RTC FORMAT BIN) ;

printf ("Time : %02d:%02d:%02d\r\n",myTime.Hours,myTime.Minutes, myTime.Seconds) ;
printf ("Date : %02d/%02d/%02d\r\n\r\n",myDate.Date,myDate.Month,myDate.Year) ;
printf ("The processor goes to Standby mode\r\n\r\n");

__HAL PWR CLEAR FLAG (PWR FLAG WU) ;

HAL PWR EnterSTANDBYMode () ;

}

What can we see?

The STM32 wakes up every 10 seconds. The RTC values is not reset because it is part of the Backup
domain.

| 69

Appen

dices

JTRST, JTO, l
JTCKISWCLK JTAG & SW]__MPUFPU N &
JTDOISWD, JTDQ ST { VIC < EXT MEM'CIL (FMC)
iitpileds =|<3| SRAM,PSRAM NOR-FLASH
TrRaceo@o) | ¥ ARM b NAND-FLASH, SDRAM
N
CORTEX M4 -BUS |
<
180MHz D-8US K== s QuadsSPI
S-BUS K& =
N v - 4 4
2 =[] FLASH 512kB
x 5
w
Voouss = 3.3 TO 3.6 V E K—>
D+, D- > uUsSB DMA/ = SRAM1 112KB
ULPI : CLK, D(7:0), E OTG HS | FIFOKr - <=
DiRSTF AT 2 K=>| SRAM2 16KB
J 8 Streams,
GP-DMA2 HE
FIFo] E :Z AHBZ 160Nz
8 Streams i
GP-DMA1 | fieo KR AHB1 180MHz
Ve @VDDA
- " _ROHS |
GPIO PORT A __r‘-,;c_“f;‘
PB(15:0) <> GPIO PORT B [PLL1+PLLZOPLLI 4
PC15:0) RESET&
9 GPIO PORT C CLoek
Po(150) &> [GPIO PORT D CTRL T XTAL 08
v S— 4-16MHz
PEA50) L= > | GPIO PORT E MR i;
: 0033 3o
PF(15:0) <~ GPIO PORT F Lrapas
g ao
PG(15:0) & > GPIO PORT G %233
PH(1:0) {3 | GPIO PORT H I
2 f:
4KB BKPRAM
TIMER2 2
TIMER3 '%°
—_—
EXTIT.WKUP | ah] GPOMA2 j GPOMA1 TIMER4 '%°
o7 b e——
CMD, CK ,-LAF SDIO | MMC g | TIMERS %
4 PWM, 4 PWM, 166 AHEVAPEZ [AHBIARE! TIMER12 160
ETR, BKIN as AF TIMER1/PWM [e RERTE &
4 PWM, 4 P, 65 TIMER13 '%°
ETR, BKIN as AF TIMER 8/ PWM @ : 160
2CHas AF TERY 60 TIMER14
1CH as AF TIMER10 16b @ USART2 " ::DA
I USART3 smcard
1CH as AF 16b LDA
TMERH < WinWATCHDOG {d=
RX, TX, SCK, Qi1 UART4
CTS, RTS as AF USART 1 @ N
RX, TX, SCK, ‘;i:nrd ; UARTS
TS, RTS as AF ¢ g ART 2
CTS, RTS as AF ' fridy USART 6 § SPDIF
MOSI, MISO € o
5CK, NSS as AF SPi1128 < HDMI-CEC
sck R asAr SPI4 <= TIMERS '*|¢=y Sriams
160
SD, SCK, FS TIMER7 QE SPI3/I2S
MCLK as AF
SD, SCK, FS A ko
MCLK as AF P
< 12C1/SMBUS
Voorer sox k]
12C2/sMBUS [*
8 AIN common 2|
to the 3ADCs 12C3/SMBUS &
8AIN common @VDDA
the ADC1 & 2
o the : || T FMPI2C1
BAIN10ADC3 4
’ DAC2 bXCANT |O
Y . e
l ' bxCAN2 [
DAC1asAF DAC2 asAF

CLK, NE[3:0], A(23:0), D[31:0]
NOEN, NWEN, NBL{1:0]
SDCLKE(1:0), SONE(1:0]
NRAS, NCAS, NADV

NWAIT, INTN

I <—>I:CLK. CSa, CSb, D[7:0]

»| PIXCK, D(13:0)

E'SVNC. VSYNC

Voouse=3.3TO 3.6V
D+, D-

ID, VBUS

¢ 'boA + Vssa
NRESET

OSCIN
OscouTt

Vear =1.8 to 3.6V
0SC32_IN
0SC32_0UT
ALARM_OUT
STAMP1
STAMP2

4 CH, ETR as AF

4 CH, ETR as AF

4 CH, ETR as AF

4CH asAF

2 CHas AF

1 CH as AF

1 CH as AF

RX, TX, SCK.

CTS, RTS as AF

RX, TX, SCK
CTS, RTS as AF

RX, TX as AF

RX, TX as AF
SPDIF_RX[3:0] as AF
HOMI_CECa sAF

MOSI, MISO, SCK
NSS/WS, MCK as AF

MOSI, MISO, SCK
NSSWS, MCK as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SM BAL as AF
X, RX

X, RX

MS33840V3

Figure 67: STM32F446 block diagram

| 70

Figure 1. STM32L073xx block diagram

Temp
sensor

LPTIM1

| RAM 1K USB 2.0FS
| TIME ::u DAC1
| TIv7 ::] DAC2 |

WWDG

- mUur

CRS

USART4

> RTC t

SwD < » SWD
1 FLASH
CORTEX M0+ CPU
Fmax:32MHz <:>
MPU
NVIC j
y - TSC -
PA[0:15] <: > GPIO PORTA \l_
PB[0:15] <::|'> GPIO PORT B _’ CRC t
PC[0:15] <: > GPIOPORTC RNG C:
PD[0:15] <‘;:> GPIOPORTD [>
\l— I
o
it
PE[0:15] <:::'> GPIOPORTE | g
N @
%)
£
PH[OLﬂ]‘[9:10]<: S| GPIOPORTH | N
HSI 48M
0SC_IN, 4__>| HSI 16M |
osc_out
LSl
MsI
y
WKUPx » RESET & CLK
Y
0SC32_IN,
)SC32_0UT - LSE
PVD_IN »
VREF_OUT
PMU |
NRST >
VDDA 7—I—7
VDD 1 REGULATOR

BCKP REG

—— AINx

(= K>
COMP2

li

MISO, MOSI,
SCK, NSS

RX, TX, RTS,
CTS, CK

2ch

2ch

INP, INM, OUT

INP, INM, OUT

IN1, IN2,
ETR, OUT

DP, DM, OE,
CRS_SYNC,
VDD_USB

.

oumT

ouT1

v

H
[KD

USART2

-
K

SCL, SDA,
SMBA

SCL, SDA

SCL, SDA,
SMBA

RX, TX, RTS,
CTS, CK

RX, TX, RTS,
CTS, CK

RX, TX, RTS,
CTS, CK

RX, TX, RTS,
CTS
MISO/MCK,
MOSI/SD,
SCKI/CK, NSS/

» COMx, SEGx,
LCD_VLCDx

MSv35410V1

Figure 68: STM32L073 block diagram

| 71

Versions

Version 1: June 2021

m Initial release

| 72

